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1. INTRODUCTION

1.1 Overview

This report summarizes the research conducted in the second phase of this
three-year research and development program directed toward the analysis
and evaluation of myoelectric signals (MES) as indicators of operator
alertness and piloting workload. The purpose of the study was to
investigate the efficiency of stochastic models such as autoregressive
(AR), autoregressive-moving-average (ARMA), and autoregressive integrated
moving average (ARIMA) models in characterizing the MES under different
Tevels of task-imposed burden.

The three year program built on the research performed by Madni (1978,
1981), Graupe and Cline (1975) and Graupe, Magnussen and Beex (1977) who
established the feasibility of stochastic models in characterizing sampled
myoelectric signal waveforms. In particular, the work of Madni has
established the feasibility of characterizing myoelectric signals under
varying levels of muscle tension and physical fatigue via stochastic
models. This program has explored methods for characterizing the
myoelectric signal under varying mental stress levels of the human
operator.

The research conducted provided a firm analytical and experimental basis
for model-based feature extraction by providing techniques for algorithmic
improvement in accuracy, by investigating critical issues in pattern
variations due to individual operator's behavioral differences, and by
providing techniques for symbolic interpretation. The program culminated
in the development of a prototype MES analysis system and guidelines for
its application in assessing operator stress and/or alertness in various
piloting activities.

1-1

9




S

LRNS O,

[y
, A
. '
. R

¥
e
afe,
) T

¥,
s

R E agne ATt o gh N AL a N h
EJ

A SO Ddee — B
LI e
AR
\Y .

) -

- St L
I P, SO0 U, T,

1.2 Problem Statement

The definition and derivation of objectives measures for assessing
workload, attentional demands, or operator alertness in specific piloting
tasks has been an area of investigation by several researchers for more
than three decades. Myoelectric signals (MES) have been the subject of a
search by some researchers (Kennedy and Travis, 1947; Travis and Kennedy,
1947; Kennedy, 1953) for a physiological indication of alertness in
piloting tasks. The results of these experiments demonstrated that there
appeared to be some correlation between MES properties (e.g., spike
amplitude, zero crossings) and human alertness. However, the use of these
properties as an indicator of alertness level was never successfully
incorporated in a practical setting primarily because of the excessively
high false positives in certain tasks. That is, diminished alertness has
been identified in many situations when the subject was clearly alert. One
plausible explanation for this unreliability in "answers" extracted from
MES signatures is that the information content of the original MES waveform
is underutilized. In other words, the reliability of features, the
information content of the features, and the feature extraction process are
critical to the success of the alertness/workload level discrimination
process.

1.3 Program Objectives

Several of the program objectives were met in the first phase of the
program. These included:

(1) The development and implementation of stochastic model-based
signal processing and pattern analysis approaches within the
overall framework of the data acquisition and processing
system.
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(2) The derivation of model structure, feature extraction, and
parameter identification processes for constructing MES-based
indicators of alertness/workload.

(3) The development of an experimental plan and a representative
task simulation and interface.
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(4) A pilot experimental investigation.

(5) The evaluation of MES features in terms of their relevance to
operator alertness level and/or mental load.

The second phase of the program built on the work resulting from the first
phase by enhancing model parameter estimates and algorithm accuracy,
investigating experimentally the performance of the model-based feature
extraction methods, determining pattern responses to different task
characteristics and individual differences, and establishing a rule-based
framework for interpretation of the feature parameters. Program objectives
met during the second phase of the program included:

(1) The expansion of the ARIMA-based feature extraction process to
provide better estimates of the model parameters and to
improve computational accuracy of the algorithms.

(2) Improved data collection system to provide speedy global and
automatic pick-up of MES signals.

(3) Expansion of the task simulation to include critical air pilot

situations where the alertness of the aircrew to high-stress
and multiple-task conditions is essential.
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(4) Identification of

range of feature variations and model
accuracy/validity.

(5) Development and experimental use of the extended model/system
in extracting indications of operator alertness/load level.
(6) Development of guidelines for operational application of the

MES analysis
should methods of measurements; model structuring;
parameter estimation

system in air piloting tasks.
include:

The guidelines
and interpretation techniques; and

specification of the system's control and display

requirements.

1.4 Technical Approach

Stochastic modeling and time series analysis methods have been extensively
used to statistically model the relationship between the amplitude of the
In this
amplitude fluctuations along the timeline are treated as a

signal at different points in time along the entire time history.
the
stochastic

model,
process. Stochastic models are particularly well suited as a
Such
because of their high information content, have proven to be

indicators

temporal feature extraction tool for time varying random signals.
features,
diagnostic in applications where purely spectral or ad hoc
feature extraction methods have failed (Madni, 1978). The key hypotheses
underlying the use of stochastic models as a feature extraction method for
alertness level identification were that: (1) at least one of the features
will be relatively constant and repeatable for the mental load category and
which the signal was recorded; and (2) at least one of the

nearly constant features for each alertness category/load condition will be

task during

distinctly different for each level thus enabling identification of the
category.
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The stochastic modeling approach for characterizing bicelectric signals is
most applicable to model physiological data which possess some or all of
the following characteristics:

(1) The data trace is noisy, i.e., data points show random
fluctuations in amplitude and are thus amenable to being
modelled as a random sequence.

(2) The classification problem 1is restricted to a finite,
previously established, number of categories.

(3) Simpler features extraction methods such as power spectrum
analysis, root-mean-square-value estimation, and amplitude
level coding fail to provide good separation among the
classes.

Other examples of physiological signals amenable to stochastic modeling
include: (1) Steady State Electro-encephalograms (EEGs); (2) Visual Evoked
Response; and (3) Electro-oculograms (EOGs).

1.5 Findings

The research performed during this three-year program revealed several
facts consistent with past research in this field. First, surface
myoelectric signals tend to be much too "noisy" to extract consistently
stable (i.e., invariant) features from the waveform. Consequently,
reliability of the MES signatures was found to be inadequate for reliable
discrimination. Past research 1in this area where relatively stable
features were acquired were based on the use of intramuscular Basmajian
type electrodes (Madni, 1978). With surface electrodes, trends were
observed in approximately twenty percent of the subjects tested. However,
the trends were not robust enough to make conclusive assessments. With
respect to diagnosticity, the MES pattern associated with the different

1-5
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levels of task difficulty could not be easily separated. Since great care
was exercised 1in electrode placement and contact and in task design, we
attribute these results to two key factors:

(1) The change of electrodes from Phase I of the program to Phase
[T was motivated by shape and size consideration. However it
is conceivable that the resulting MES patterns were
contaminated by extraneous signals even though the signals

;t. - looked clean and devoid of 60 hertz interference. The main

analysis.

s reason for this conclusicn stems from the significantly better
- results in terms of stable features achieved during Phase [ of
E'- this program. This argument can account in part for the Tlack
E:;j of reliability in the MES signature derived via ARIMA model
-

(2) The selected muscle sites, 1i.e., the frontalis and the
trapezius may not be as correlated with operator alertness/
workload Tlevels as originally envisioned. This argument
accounts in a large part for the relatively low diagnoscity of
MES signatures in distinguishing reliably among the different
task lcading conditions.
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The implications from this three-year research program are two-fold.
Surface myoelectric activity is not a reliable measure of operator
alertness. During Phase I, the first autoregressive coeffocient of the
ARIMA model revealed a significant correlation with task difficulty level.
Ouring Phase [II, the 7™ weights did not show the same trend. Intramuscular
electrodes, on the other hand, that do pick up more reliable signatures
have obvious drawbacks. Post hoc analysis of the experimental data
revealed that the total number of experimental subjects which were
constrained by program scope and size were inadequate in terms of producing
a statistically significant difference in perceived stress between the
single and dual-task groups. A detailed description of findings is
presented in Section 6 of this report.
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2. BACKGROUND

2.1 Rationale and Hypothesis

The MES, within the context of human performance and workload, has been
studied by various researchers over the last three decades. Within the
context of human performance, the MES can be potentially used to provide a
measure of either activity of the muscles or the tension of the muscles.
When workload estimation is involved, data processing of some kind has to
be performed on the raw MES data. This processing can range from
conventional signal processing and filtering methods to temporal feature
extraction and pattern analysis methods.

A number of studies have been carried out to demonstrate the practical
value of MES as a measure of task workload and performance quality. Among
the earliest research is that of Kennedy and Travis (1947, 1948, 1949) who
found that the level of the integrated MES recorded over the supraorbital
facial area was closely related to vigilance and tracking performance.
Lucaccini (1968) observed similar changes in the integrated forearm flexor
muscle MES during simple and complex visual tasks. He also reported that
the average intrasubject correlations between MES and performance were
significant in both tasks (r = .21 and .30 in simple and complex tasks,
respectively). Stern (1966) found that integrated neck MES rose initially
and fell thereafter during easier and more difficult (lower signal
frequency) versions of a simple visual task.

[t seems from these results that integrated MES voltage is one of the
better predictors of vigilance performance, but it has not been universally
accepted that MES varies directly with vigilance task performance. Eason,
Beardshall and Jaffee (1965) interpreted their results as indicating that
sympathetic activity decreases along with Central nervous system arousal

2-1
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and vigilance, but that somatic activity increases as part of a
compensatory process. Groll's (1966) conclusions were essentially the
same. Yet, judging from their results and the contradictory findings of
others, muscle tension, like performance, may reflect both the processes
underlying declines in vigilance performance and those acting to counteract
it.

Pp———

For these reasons, stochastic modeling approaches which examine the entire
temporal signature, i.e., the whole latency domain, are preferable to ad
hoc isolated-feature dependent methods. It is expected that the use of
stochastic model-derived features in conjunction with single-features such
as P300 component amplitude and latency (e.g., Israel et al, 1980)
potentially offer a diagnostic and reliable direction for the assessment of
internal operator states.

Jex and Allen (1970) found that rectified and suitable filtered MES
recorded from the forearm of subjects showed a decrease in amplitude when
subjects changed from a resting to a tracking state. These researchers
also found that grip pressure increased with an increase in tracking
difficulty. Sun, Keane and Stackhouse (1976) and Stackhouse (1976) found
that MES from the forehead and the forearm were correlated with task
loading in a variety of aircrew tasks. Madni (1978) found a deterministic
correlation between MES reorded during isometric contraction of the deltoid
muscle at various load levels and the associated MES stochastic model
parameters.

From the foregoing, it appears that MES can potentially provide reliable
correlates of operator states such as alertness levels or load; however, in
order to achieve this goal, computer-based signal analysis and feature
extraction methods must be systematically applied to the MES recordings.
Stochastic modeling approaches which examine the entire temporal signature,
i.e., the whole latency domain, are preferable to ad hoc isolated feature-
dependent methods. It is expected that the use of stochastic model-derived

2-2
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features in conjuction with single-features such as P300 component
amplitude and latency (e.g., Israel, Wickens, Chesney and Donchin, 1980)
potentially offer a diagnostic and reliable direction for the assessment of
internal operator states.

Even with stochastic modeling approaches, the transient nature of ERPs
require that a fairly general form of a stochastic model be used, i.e., one
that can at least accommodate nonstationarity in the mean of the waveform.
Since ARIMA stochastic models are designed to handle nonstationary means,
they offer a particularly promising framework for extracting informative
features from ERPs.

2.2 Stochastic Models

Stochastic modeling or time series analysis (Box and Jenkins, 1970) have
been extensively used to model the statistical relationship between the
amplitude of a signal at any point in time and the preceeding amplitudes
along the time history. The amplitude fluctuations along the time line are
treated as a stochastic process. The future course of the process is
presumed t~ be predictable from information about its past.

Before describing these models, the notation employed will be summarized.

. Let

cooee e Xko1XkXK4loooooens

be a discrete time series where X; is the random variable X at
time i. We denote the series by [X].

. Let . be the mean of [X]|, called the level of process.
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. Let [X] denote the series

Xj=X§ - u

of deviations about . ; that is,

. Let [W] be a series of outputs from a white noise source with a

mean zero and variance

-

2

. Let B be the "backward" shift operator for the deviation series

such that

Bxk = xk-1

Hence, Bmxk = Xk-m

. Let 7 be the backward difference operator for the deviation

series such that

7 Xk =Xk-Xk-1=(1-B) xk

Hence, 7Mxy=(1-B)Mx

The dependence of the curren
w can be expressed in di
different models.

t value xi on the past values of x and
fferent ways giving rise to several

2-4
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(a) Autoregressive (AR) Models. In this model the current value
_— of x depends on the previous p and x and on the current noise
A term w. Thus,
] Xk=GIXk_1 + aZXk_Z + tie. + apXk_p + Wk
; or
p
. Xk = % ajXk-2 + Wk
g i=1
ey ¢
2 The series [X] as defined above is known as the autoregressive
p.-ocess of order p. The name "autoregressive" arises from the
- model's similarity to regression analysis and the fact that
: l. the variable x in an AR model is regressed on previous values
{j; of itself.
S (b) Moving Average (MA) Model. In the equation for the AR model,
‘P ¢ Xk-1 can be eliminated from the expression for xy by
substituting
o )
L Xk-1 = a]1Xk-2 + 32Xg_3 + ....* ApXk_p-1 + Wk-1
o The process can be repeated to eventually yield an equation
.t[ﬁ for x) as an infihite series in the w's. A moving average
{f{f model allows a finite number q or previous w values in the
L.

2-5




expression for xk. This formulation explicitly treats the
series as being observations on linearly filtered Gaussian
noise. A MA process of order q is given by

Xk = biwk_i + wk

[ i o

.i

(c) Mixed Model: Autoregressive-Moving Average (ARMA) Model. To

achieve flexibility in the fitting of actual time series, this
model includes both the AR and the MA terms. A (p,q) ARMA
model has the form:

Xk = diXk-i + Wk - biwk-i

1 i

W o~1 O
W~ o

i 1

In a1l three models described above the process of generating the
series is assumed to be in equilibrium about a constant mean
level. Models characterized by such an equilibrium condition

are called stationary models. In certain time series data,

the Jevel u does not remain constant, i.e., the series is
nonstationary. The series may, nevertheless, exhibit
homogeneous or stationary behavior after the differences due

to level drift have been accounted for. It can be shown that
such behavior can in certain instances be represented by an
autoregressive-integrated-moving-average (ARIMA) model.
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7‘. " (d) Autoregressive-Integrated-Moving-Average (ARIMA) Model. The
general (p,d,q) model has the form

a4 dek-i + Wk -

1 i

Diwk-i

N oo

. ) i

A voe e e
- .
<]
(=%
x>
F o
it
[T St Bl |

where xi is the original time series

7 is the backward difference operator

d is the number of differencing operations performed
on the original data

p 1is the order of the autoregressive terms
is the order of the moving average terms

If Yk = dek

o

Then Yg = 1 ajyk-i+wg -
j=1 i

biwk- 1

n ™~ O

This model is referred to as a general (p,d,q) model referring

to a general pth dth data differencing,

qth order moving average process (Box et al, 1970).

order autoregressive,

2-7
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2.3 ARIMA Models in MES Characterization

The feasibility of ARIMA Stochastic Model Identification for feature
extraction was explored by Madni (1978). The key elements of this study
are provided in the following paragraphs.

The experimental data consisted of MES records from the deltoid muscle for
different isometric contraction levels. These ranged from 0% to 100%

i | B
I f—
et e

(maximum), where 100% tension is defined as 100% of the force generated at
maximum effort, not 100% of MES. The primary assumption in this experiment
is that an X% run corresponds to X% of muscle tension which is proportional
to abduction, and that the only muscle involved in abduction is the
deltoid.

T | an nn G aon SR v 4
LT } L
el

N : The results of the spectral analysis performed on the experimental data

ﬁli _ revealed a gradual but definite shift of power to lower frequencies with an
& D increase in muscle contraction. The total power of the signal was found to
Fj. lie below 2500 Hz. The most significant shift of power to lower

frequencies with increasing muscle tension was observed in the frequency

band that contained ninety percent of the total power.

ARIMA models were fitted to the MES data recorded for each contraction
level. The ARIMA parameters were fitted across the n trials for each
contraction level. [t was shown that AR terms of the a vector do not
change significantly for the 1%, 5%,...... ,50% tension levels. However,
the AR coefficients for the 100% tension level is quite different from
those for all other tension levels (both in sign and magnitude). The
contraction level ranges (within which the AR coefficients of the ARIMA

pattern vector are relatively stationary) that resulted from this
experiment were:
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. 3 (1) 1% through 50% (or 'low') contraction range
(2) 50% through 100% (or 'high') contraction range

Each of these two contraction ranges can be represented by an average
pattern vector. A question that arises here is how one can determine,
online, the underlying contraction levels from the MES spectral signature.
The results from the spectral signature analysis reveal that 90% of the
cumulative power was below 400 Hz for the high tension case, but was above
400 Hz for the low contraction level case. This fact provided a useful
criteria for determining whether a given MES pattern should be compared to
the 'low' contraction pattern vector or the 'high' contraction pattern
vector. Details of the online recognition rule may be found in Madni
(1978).
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3. SYSTEM IMPLEMENTATION AND EXPERIMENTAL SET-UP

3.1 Overview

The system architecture was designed and impiemented in parallel with the

if'> first series of experiments for assessing the "goodness" of model-derived
}li features in terms of their relevance to operator alertness/workload levels.
- . The primary tool used for performing this assessment in both series of
kgll experiments is a computer-based stochastic signal processing and pattern

recognition algorithm described in earlier sections.

This section discusses the behavioral issues being investigated through the

use of model-based feature derivation/extraction of workload correlates.
Workload correlates were primarily gathered through a task simulation based
on the Criterion Task Set (CTS) workload test battery developed at AFAMRL
(Shingledecker, 1983). The task simulation was altered to some degree to

)f accommodate the experimental hardware constraints and to control the
experimental and behavioral variables during the task. Each subject was
presented with controlled workioad tasks along cognitive processing and
motor task dimensions. As the subject performed the various tasks, the MES
data was recorded at rest, at the beginning, and near the end of task
execution. At the conclusion of each task, model outputs, subject
performance, and subjective rating comparisons were made between levels of
task loading and among the various task dimensions.

3.2 ARIMA Model I[dentification of MES

The key research problems forming the basis of this study and underlying
the wuse of stochastic models as a feature extraction method are described
in the following paragraphs.
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The fundamental hypothesis forming the basis of this study is that MES
recorded from selected muscle groups are correlated with internal states of
the human operator (e.g., alertness level or mental load) and that a
suitably selected/designed feature extraction method is capable of
uncovering the underlying operator state in terms of invariant features
associated with the MES. [t was our hypothesis that stochastic model
characterization of the MES waveforms is potentially capable of "capturing"
features that are both repeatable and diagnostical. Repeatability implies
that there 1is at least one parameter in the stochastic model
characterization of MES data that is constant or near-constant for each
underiying level of alertness or load in a given task. Diagnosticity
implies that these nearly invariant features are sufficiently different for
each level of alertness, thereby allowing identification of the underlying
operator state. The specific stochastic model selected for MES
characterization is the ARIMA model.

As shown earlier, an ARIMA model for a general time series has d levels of
)f differencing, p autoregressive coefficients, and g moving average
coefficients as shown in the equation below:

..d ; 7
/ Zt-@lvdzt-l _ ....Q)p/dZt-p:at'elat—l - ....eqat_q

where TdZu is the dt" difference of the time series at time u
ay is the zero mean, normally-distributed random noise at time u
oj s the 1M
8 is the ith moving average coefficient

autoregressive coefficient

Determination of p, d, and q is a three step procedure. The first step of
the ARIMA modeling as provided by Box & Jenkins (1970) is to identify p,d,
and q. The specific software module associated with this step calculates
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autocorrelations and partial autocorrelations for different levels of data
differencing. These autocorrelations and partial autocorrelations provide
an insight in selecting p,d, and g of the ARIMA mcdel. To determine d, one
looks at the autocorrelations for a given level of differencing and
observes whether or not they "die out" rapidly. If they do, the given
level of differencing 1is adequate; if not, additional differencing
operations are required until this constraint is satisfied. The smallest
level of differencing for which the autocorrelations die out rapidly is
taken as the optimal level of differencing, d.

To determine p and q we look at the autocorrelations and partial auto-
correlations for the selected Tevel of differencing. Box and Jenkins
summarize this approach as follows:

"Briefly, whereas the autocorrelation function of an
autoregressive process of order p tails off, its
partial autocorrelation function has a cutoff after
lag p. Conversely, the autocorrelation function of a
moving average process of order q has a cutoff after
lag q, while its partial autocorrelation tails off.
[f both the autocorrelations and partial autocor-
relations tail off, a mixed process is suggested.
Furthermore, the autocorrelation function for a mixed

process, containing a pth order autoregressive

th order moving average component, is

component and a q
a mixture of exponentials and damped sine waves after
the first p-g lags. Conversely, the partial auto-
correlation function for a mixed process is dominated
by a mixture of exponentials and damped sine waves

after the first p-q lags."
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Once p, d, and q are selected, we proceed to the second stage of the model

v,

identification process. The purpose of the second stage is to come up with

-

_=‘ . .

initial estimates of the autoregressive and moving average parameters.
These initial estimates are then used by the third stage of the model in
generating final estimates of the autoregressive parameters. The result of
this three-stage process is a feature vector consisting of parameters that

;: parsimoniously characterize the original MES time series data.

F(!I - 3.3 ARIMA Software (AUTOBJ) and Functional Description

f,

} _ The ARIMA modeling of MES was based on a recently released program, AUTOBJ
{f’ (an automatic Box & Jenkins modeling procedure) developed by Automatic
F; Forecasting Systems, Inc. for use on an IBM PC/XT with an 8087

floating-point chip. The previous system, the COSMOS/UNIX system, did not
support a floating-point hardware. Consequently, it was necessary in phase
one of the effort to develop a batch mode program that allowed the
experimenter to specify up to 25 files representing 25 experimental

‘II D sessions and process all the records in these files. AUTOBJ, the software
on the IBM PC/XT with the supporting floating-point hardware does not
require this batch processing. The key features of AUTOBJ are described in
Table 3-1.

TABLE 3-1
KEY FEATURES OF AUTOBJ

<
é-,; . Computes the optimal level of differencing.
Ej“j . Easily handles a mixed model (ARMA) (the in-house system
{S»f generally set q to zero).
o

. Discards ¢ and e weights of low significance.
. Computes - weights as opposed to AR parameters for
comparisaon.
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The models obtained for the software used during phase one were generally
AR models whose coefficients were directly comparable, while the models
produced by AUTOBJ that have differing values of p, d, and g may not be
directly compared. This problem of incompatibility was solved by using the
model to generate T weights and using the 7 weights for comparison rather
than the model feature vector.

Any ARIMA (p,d,q) model can be expressed as an infinite series of weights
as follows:

Take the general ARIMA (p,d,q) model,

(1-%(B)) (1-8)97¢=(1-84(B))at

Divide both sides by (l-aq(B)) to yield,

(1-4(8)) (1-8)%Z¢= a

(1-eq(B))

The resulting polynomial coefficients of the potentially infinite order
polynomial in B represent the - weights. If g=0, then the polynomial is of
order p and identical to the & p(B) polynomial. It is impgrtant to
truncate the 0 weights after some number such as (p+d+q) to parsimoniously
represent the time series.
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With its floating-point hardware support and automated identificaticn

procedure, the AUTOBJ program was a very powerful tool for the purposes of
this investigation.

AUTOBJ allows efficient implementation of Box & Jenkins models and produce
time series identifications. Starting with raw data, the program's
algorithm follows the model building methodology described by Box and
Jenkins -- that of tentative model identification, parameter estimation and
diagnostic checking (for the purposes of this project, only the model
identification was employed). While requiring only minimal input by the
user, the program is quite flexible in allowing for optimal user control.
AUTOBJ provides a quick, convenient and powerful means for developing ARIMA
models for the MES time series data.

To be more explicit, AUTOBJ consists of two stages. In the first stage the
system queries the user for information concerning the data. Stage two
involves the execution of the statistical ARIMA modeling analysis based on
the data introduced in stage one. The output of the program is a detailed
printout of the feature vectors calculated from the modeling process of the
time series identification. These vectors are later used to evaluate the
correlation of the MES signature to the performance measures from the
various tasks.

3.4 ARIMA Model Implementation

The AUTOBJ software package was used to extract the time series
identification from the experimental data. It took approximately 30
minutes of run-time to process each file consisting of 1000 data points.
The resulting printout for two subjects is shown in Appendix D. The
modeling results include univariate model parameters (such as the mean and
the ARIMA coefficients), residual statistics and pi-weights.
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3.5 Signal Integrity Plotting Package

The first series of experiments during phase one did not incorporate
explicit means of verifying the integrity of the signals being measured.
In order to alleviate this problem, a graphics package was developed on the
IBM XT to plot the data sampled from both the frontalis and trapezius
muscles.

The graphics package, written in C programing language, is customized to
the data formats of each new series of experiments. The first one hundred
characters of each data file is reserved for a descriptive header. This is
followed by 1000 integers in ASCII format.

Three variables are presented to the user with this package: vertical
reduction, horizontal magnificatiun and the number of data files to plot.
The maximum screen resolution that could be achieved on the IBM XT using a
Tecmar Graphics Master Card was 640x200. The flexibility resulting from
the vertical reduction and horizontal magnification allows the user to
scale the graph within these screen limits. The vertical reduction allows
the user to contract the graph along the y-axis in order to ensure that it
fits within the screen boundaries. The horizontal magnification allows the
user to expand the graph along the x-axis, where the number of data points
plotted equals 640/(horizontal magnification). Either one or two data
files are plotted along with their respective descriptive headers.

3.6 Communication Interface

Two separate communication interfaces are used in the experimental setup.
The interface between the data acquisition system and the IBM XT is used
both for the transfer of messages regarding sampling variables to the data
acquisition system and the transfer of the sampled data itself. The
interface between the Apple Ile and the IBM XT is used for the control of
the tasks presented to the subject.
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The 1ine between the IBM XT and the data acquisition system is an IEEE-488
bus. This line can transfer data at rates up to three hundred megabytes
per second. The [EEE-488 interface to the data acquisition system is built
into the system while the interface to the IBM XT had to be purchased
separately. This consists of a plug-in card and related software which can
be used with applications written in 8086 assembler, Basic and C.

The connection between the Apple Ile and the IBM XT is a standard RS-232
line configured for 9600 baud, even parity, 1 stop bit and a 7 bit word.

3.7 Hardware and Instrumentation

3.7.1 System Selection. The COSMOS computer initially selected for
system control and data analysis functions was found to be too limited for
our purposes in a number of areas. First, the available A/D cards for the
COSMOS  (used for amplifying and digitizing the analog myoelectric signals
for input to the computer) were too limiting in the control of parameters
such as amplification gain, sampling frequency, number of data input
channels, etc. Additionally, the lack of graphics capability of the system
prevented us from observing the actual signals acquired for integrity. The
general wunavailability of peripheral devices (e.g., floating-point
hardware, graphics hardware) for this particular machine initially forced
us to design the experiment around hardware limitations. Therefore, a
decision was made to re-analyze the hardware requirements and replace the
COSMOS with a different system which offered enough flexibility to handle
most any contingency which could occur over the course of the program.
Among the requirements of this system were (1) floating-point hardware
support, and (2) graphic display capability. Initially, an additional
requirement was the availability of an appropriate "C" compiler so that the
ARIMA model software used in the first phase of the program could be easily
transported to the new computer. This requirement later proved unnecessary




= since the computer chosen to replace the COSMOS had available to it a
!.I ’ commercial model package called AUTOBJ which automated the modeling
‘ procedure and improved on some inadequacies of the original software.

AUTOBJ was suitably modified for Automatic Forecasting, Inc. for use as a
feature extraction tool for our purpose.

An IBM PC/XT microcomputer was selected for both data acquisition and
executing the application software. While this 8088 based machine, in

- n general, 1is not as powerful as the 68000 based COSMOS UNIX system, it
}‘Il offered the advantage of widely available peripheral hardware and software
e items which were added resulting in an application-specific configuration.
The system (Figure 3-1) was configured as follows:

: PRINTER

. ) DISPLAY

[ APPLE J[e

b

o . KEYPAD \

. .

®] JL_jovsmick RS-232 | iBMPO/XT

b

4 .

[ SYSTEM
A CONSOLE
[- - | DATA

o: Ag-AgCl | acquistrion | EEE-488
g ELECTRODES SYSTEM

FIGURE 3-1.
SYSTEM CONFIGURATION
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- RS-232, IEEE-488, and Centronics interfaces

- 8087 numeric coprocessor

- Trans Era MDAS 7000 data acquisition system

- Tecmar graphics card

- Amdek high resolution monochrome monitor

- Apple Ile with graphics card, serial port, joystick
- Okidata dot matrix printer

3.7.2 Acquisition System. A data acquisition system (DAS) was required
to sample the myoelectric signals. The system had to impose as few
limitations as possible regarding sampling speed, resolution, variable

sampling windows, storage, etc. Furthermore, cost was to be kept to a
minimum within program budgetary allocation.

Myoelectric signals have a bandwidth ranging from 25 Hz to approximately
5Khz. However, all the necessary information for our purposes lies within
the bandwidth of 25 Hz to 500 Hz. Thus, in accord with Nyquist's sampling
theorem the DAS was required to sample at a minimum of 1000 samples per
second.

The amplitude of myoelectric signal obtained from a standard electrode
varies from 100 V to approximately 5mV. A system which is not sensitive
enough for this range of signals would need to have the signals
preamplified before they are digitized. This in turn would increase the
cost, the complexity and the noise introduced into the system.

A minimum of 2 analog inputs had to be present in the system. True
simultaneous inputs would be an advantage in that any possible correlation

between the 2 channels could be investigated with more accuracy.

The system required a software package which made available to the user an

easy and fast method of CALLing assembly language subroutines from C to
handle the [/0 and sampling functions.
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Many systems were investigated for our purposes. However, only one system
fulfilled all the important requirements. TransEra's Model 7000-MDAS is a
stand-alone data acquisition system based on the Motorola 68000 micro-
processor. The basic processing and Control Unit consists of: 16 slot
chassis, basic power unit, 10MHz 68000 processor card with timing module
and real-time clock, 2 RS-232 serial ports, 1 IEEE-488 interface port, 22K
of static RAM and a 64K firmware module.

Two upgrades purchased with the system were a 16-bit A/D, D/A conversion
card which includes 8 programmable gains from 1 to 128 and a low-level

+0.1v, differential analog input module which provides up to 4 isolated
simultaneous inputs.

This system has a resolution of approximately 3.05 V per bit with a gain

of 1 and has a maximum sampling rate of approximately 48000/ (number of
channels) samples per second.

3.7.3 Electrode Selection. As discussed in our interim report (Madni,
Chu, Otsubo and Purcell, 1984), the Motion Control electrode packages were
originally selected for use based on the high-performance characteristics
of their integral signal pre-amplifier. However, these electrodes were
physicaily too large to allow for placement on some potentially useful
sites (e.g., forehead). Additionally, the sensitive CMOS circuitry used in
the design of the pre-amplifier was extremely susceptible to static
discharge induced failure with no simple means of failure indication short
of experiencing signal degradation.

[t was decided that silver/silver chloride "button" type electrodes along
with an external high-performance pre-amplifier would be more suitable for
our purposes. The characteristics of the VIVO Metric silver/silver
chloride electrodes in summarized in Table 3-2.
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TABLE 3-2

CHARACTERISTICS OF VIVO METRIC
SILVER/SILVER CHLORIDE ELECTRODES

- Sensor Dia.: 4mm

- Housing Dia.: 7 .2mm

- Overall Height: 6mm

- Electrode Cavity: Imm deep

- Lead: Im shielded cable

3.7.4 Electromagnetic Interference. Our preliminary study had indicated
that 60 Hz interference was contaminating the myoelectric signal. To this
end, we constructed a Faraday cage (a grounded, wire-mesh cage) within the

room in which a subject could sit while performing a task, essentially
shielding him from extraneous R-F interference. Any remaining EMI was
removed by using differential electrodes and by grounding the subject.
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4, EXPtRIMENTAL STUDY

4.1 Overview

The phase one series of experiments were designed to assess the "goodness"
of stochastic model-derived features pertaining to operator alertness and
workload levels. In that study, behavior variability and hardware
limitations prevented totally reliable measures to be gathered from
subjects. To alleviate these problems, more stringent experimental design
and methodologies were developed to improve experimental control and
circumvent the hardware limitations observed during the initial series of
experiments.

This section describes the new experimental procedures and the tasks
involved in deriving workload correlates. The rationale for changing the
tasks, wvariables and procedures from the original series of experiments,
was so that workload performance and perceived stress could be measured
more reliably with model-derived MES features.

4.2 Experimental Hypotheses and Test Procedure

The major effort of this program was to be able to predict perceived
workload levels from model-derived MES features. To predict workload
levels, these MES features have to be reliable and diagnostical to infer
appropriate operator states. Two hypotheses, which are characterized as
“reliability" and "diagnosticity," were investigated in this study. These
hypotheses are:

o Reliability - A minimum of one set of values in the ARIMA mode!l
provides invariant or near-invariant pattern values for each
subject within a predetermined underlying level of mental load
for a given task category, thus achieving "reliability".
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o Diagnosticity - Each level of task difficulty has its own

distinct pattern, providing a "diagnostic" feature for predicting
operator wokload/altertness with model-derived MES features.

To ascertain the reljability and diagnosticity of MES-derived features,
several issues were investigated. The first involved detecting at least
one set of values in the ARIMA model for each underlying loading/alertness
level, subject, muscle site, and task level. To determine this, model
coefficients and their related pi-weights were examined for invariance
across multiple samples within trials and across multiple trials. If
values were found that satisfy the necessary invariant conditions, they
were then considered "reliable". These reliable features must also have
been sufficiently different in magnitude for each level of the task, to
exhibit the attribute of "diagnosticity."

4.3 Experimental Tasks

The original series of experiments were based on simulating a subset of the
Criterion task Set (CTS) workload test battery that was developed at AFAMRL
(Shingledecker, 1983). These experiments were based on the degree to which
they satisfied the requirements of: (1) validity and reliability, (2) flex-
ibility and quantifiability, (3) memory, (4) mental mathematics/reasoning,
and (5) choice reaction time. Unfortunately, data from only one subject
was used to validate task parameters. Thus, the tasks used in the original
experiments were not stringently pretested and validated to correlate to
the desired levels of "low" and "high" workload levels; the low difficulty
level tasks may have been too easy for the subjects, generating boredom,
and the high levels may not have actually represented a higher task-imposed
of "stress". There were observed differences in performance and subjective
ratings between the high and Tow levels of task difficulty, but all
subjects seem to exhibit boredom and fatigue due to the long experimental
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sessions and the repetitive task performance required of them. Thus, in
the pilot set of experiments, instead of experiencing different levels of
stress, subjects were experiencing boredom and fatigue.

Additionally the original tasks were discrete, independent task components,
rather than integrated task situations to match the Criterion Task Set
(CTS) under development at AFAMRL. This minimized the external validity of
the tasks.

To alleviate these problems, a new set of tasks was developed to:

0 Minimize the fatigue and boredom that resulted from the first
series of experiments:

o Achieve a higher level of external validity;

o Represent validated task levels of low and high stress.

The new set of tasks was developed, based on the objective that when given
a primary task at a comfortable pace, adding a secondary task will increase
the 1level of difficulty of the total task. Thus, the perceived stress
experienced by the subject should theoretically increase. We first
analyzed the basic CTS and selected a subset to employ as our experimental
tasks.

The overall CTS included the following task components:
(1) Perceptual tasks
0o Probability monitoring task

0 Auditory monitoring task
0 Visual target search task

4-3




(2) Central Processing Tasks

0 Memory tasks - memory update, memory recall
0o Manipulation =nd comparison tasks - linguistic processing,
mathematical computation, spatial pattern identification

o Reasoning tasks - analogical reasoning and grammar

o Planning and scheduling - flight assessment and supervisory
control

) |

S (3) Motor tasks

o Critical tracking task

A subset of the CTS was selected from existing tasks previously researched
and validated at AFAMRL. These task dimensions included a motor task

(critical tracking) and a perceptual task (auditory monitoring).

" The two tasks wused in this series of experiments are described in the
following paragraphs.

Critical Tracking Task

The critical Tracking Task was developed as the primary task. In this task
the subjects were required to track a target on a computer display screen
by controlling a "site" object with a joystick. The subject was directed
to track and surround the target with the site, as the target randomly
moved around the screen., Performance was based on the average distance
between the site and target over the entire session. The more control the
supbject maintained over the tracking task, the Tower the average distance
recorded. This task was developed to represent the desired level of "low"
stress.
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Critical Tracking Task With Added Auditory Monitoring Task

The same Critical Tracking Task was then combined with a secondary auditory
monitoring task. This second task required the subject to respond to an
auditory tone by pressing a button on top of the joystick. The tones were
intermixed so that one tone represented signals and a different tone
represented "noise". The subject was required to distinguish the signals
from the "noise" by pressing the button only when the signal was heard.
The subject was required to respond within 1/2 second from the time the
signal was presented. If no response was made within that time, an
omission error (a "miss") was recorded. If the subject pressed the button
when no tone was presented, a commission error (a "false alarm") was
recorded. This monitoring task was presented to the subject with the
primary critical tracking task, thus representing a more stressful task
than the primary task alone.

4.4 Experimental Variables

The experimental design utilized a within-subject repeated measures design.
The following independent variable was tested:

o Task loading - two levels of difficulty or "stress"
(1) Critical tracking task only ("low" stress)
(2) Critical tracking task + auditory monitoring tasks ("high"

stress)

The dependent variables gathered from the varying task loading situations
were:
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0 Performance measures

' (1) average distance between the site and target for the critical

X tracking task

r . . . . -

. (2) auditory monitoring responses, (errors of omission and
- ! comission)

0o Subjective measures of effort and stress - gathered from
post-test questionnaires

0 MES data gathered through the data acquisition system

In the initial series of experiments there were two task categories and two
levels of task difficulty.

Pl o SNf el i S i 4

o Task category - two types

b
e s

(1) Central processing tasks

Motor tracking tasks

0 Task loading - two levels of difficulty

L AR O . e

vvw'v_-,‘rﬁ
. — )

(1) Low load
(2) High load

= We attempted to stay within the same criteria established in the first
;., series, i.e., CTS implementation utilizing two levels of stress. The only
t major change was the integration of the task categories of a perceptual
; i (auditory) and a motor tracking task together, to achieve a higher level of
C external validity. We also employed the use of secondary task loading to
i’. validate the assumption that presenting an additional task places higher
& cognitive 1load on the subject, thus increasing his perceived "stress."
-
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This probe-reaction-time technique has been utilized with notable success
in uncovering resource demands for various perceptual/motor and cognitive
tasks (E11s, 1973; Posner & Bois, 1971; Posner & Keele, 1969).

To validate the two levels of "stress", pilot studies were performed.
Initially, five test subjects were presented seven varying levels of
difficulty for the critical tracking task. They were given 30 seconds to
perform each level, from the easiest (Level 1) to the most difficult {Level
7). Each test subject practiced and became familiar with all the levels.
tEach was then given the opportunity to move the Tevel of difficulty up or
down by pressing the up-cursor (increases the difficulty level) and
down-cursor (decreases the difficulty level) on the computer keyboard.
They were told to reach the level at which they felt most comfortable, i.e.
not too easy and not too difficult. We assumed that this level would
represent the "low" stress level. Three of the test subjects chose level
4, while two subjects chose Level 5, thus we established Level 5 as the
level of “low" stress, to minimize the problem of boredom and fatigue that
was found to occur in the first series of experiments. We again tested the
pilot subjects on the task only at Level 5, and all agreed that it was
comfortable level. Those who initially selected Level 4 as the comfortable
level could not tell the difference once given the task at tevel 5, thus,
we maintained Level 5 as the established level of "low" stress.

To find the appropriate level for the secondary task of auditory
monitoring, we again conducted pilot studies in which the same test
subjects performed the same critical tracking task (Level 5) with varying
levels of auditory monitoring (Levels 1-7). Test subjects again were able
to practice the critical tracking plus auditory monitoring task to become
familiar with all the levels. Next they were given the opportunity to
control the Jlevels of auditory monitoring by pressing the up-cursor
(increasing frequency of signal and noise presentation) and the down-cursor
(decreasing frequency of signal and noise presentation). Subjects were

4-7
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told to maintain the level at which they felt comfortable, i.e. not too
easy and not too difficult. Al11 subjects chose Level 4. This task was to
represent the level of "high" stress, thus we increased the actual auditory
monitoring task to Level 5. We attempted to increase the difficulty by two
levels (to Level 6), but discovered that the signals were presented in a
predictable pattern. this made it easier instead of more difficult to
respond. Consequently, we maintained the auditory presentation of Level 5
as the established level of "high" stress.

We then presented both tasks to all test-subjects, gathered performance and
subjective data, and found that there was an observable difference between
the "low" stress and "high" stress task performances based on the average
distance from site to target on the critical tracking tasks, and on the
subjective responses to the amount of effort exerted and stress perceived.

4.5 Muscle Site Selection

Exist.ng 1literature (Madni, Chu, Otsubo, and Purcell, 1984) suggests a
number of muscles (frontalis, trapezius, splenius, temporalis, masseter,
brachioradialis) which undergo sporadic, potentially diagnostic activity
during high workload situations. Our new data acquisition system gave us
the capability of acquiring data from multiple muscle sites, and our new
electrodes were of a small enough size to permit judicious placement.
However, the additional processing time involved in modeling the data from
each additional muscle restricted us at this time to a maximum of two
sites. The frontalis and trapezius muscles were chosen.

4.6 Subjects and Procedures

In this phase of the program, 12 male subjects were recruited from the
local wuniversity, and from the available Perceptronics pool of volunteer
subjects. Subject ages ranged from 19-35 years old. A1l had at least a

4-8
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high school diploma and some experience with using computers. A 2X2
within-subject repeated-measures design was employed. Each subject
performed the two tasks twice. After they completed each task, they were
given a questionnaire (See Appendix C) to complete regarding their
subjective evaluations of the effort expended and the difficulty of the
tasks.

[n this phase of the program, several major changes were implemented.
Before performing the actual experiment, several pilot studies were
conducted to investigate the validity of the tasks to be presented. Upon
examining the results of the pilot studies, we were able to substantiate
the expected differences between the two levels of task difficulty based on
task performance and perceived stress.

The original series of experiments attempted to represent low and high
levels of difficulty by isolated, discrete tasks. By presenting subjects
with different tasks, there was no way of validating whether the tasks used
were actually of varying degrees of difficulty or whether they were just
different in task type. that is, it was more clear whether the tasks
really fell as different points on "level of difficulty" continuum. To
correct for this undefined task variability, the method of secondary task
loading was used; an auditory monitoring task was added to the primary
critical tracking task. This procedure insured that if there was a
difference between the primary task ("low" stress task) and the primary
plus secondary task ("high" stress task), then it must be due to the
additional cognitive 1load imposed by the secondary task (see Knowles,
1963).

We also recruited 12 subjects participate in the experiment, compared to

only 3 subjects in the initial phase so that the statistical power of the
experiment would be increased. The results from only three subjects may
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have been due to chance. Increasing the number of subjects would provide a
greater probability that the results would demonstrate statistically
significant differences.

The total time required of each subject was 1 to 1-1/2 hours. This is
vastly different from the two to three sessions required of them in the
initial series of experiments. Reducing the amount of experimental time
minimized the probability that the subjects were bored and fatigued with
the experimental procedure, and consequently, reduced the probability that
physiological measures would be confounded.

Each subject was asked to read the instructions (Appendix A) explaining the
experimental procedure. Subjects were encouraged to ask gquestions as they
read the instructions to ensure that they understood the tasks. They were
then requested to read and fill out a "personal information fact sheet" and
"consent to act as an experimental subject" form. The active electrode
assembly was then attached above the (frontalis muscle), and to the
subject's upper back (trapezius muscle), running parallel to the muscle
fibers. A third "ground" electrode was positioned near the elbow. A1l
electrodes were placed on the subjects' non-dominant side (right-handed
subjects had the electrodes positioned on the left arm, and vice versa).
Subjects were given an orientation and practice session lasting 5-10
minutes to minimize the learning effect that could occur during the
experiment itself. The practice session was concluded when the subjects
produced comparable scores on two successive trials for each task. the
subjects were then instructed to sit comfortably upright in the chair and
cautioned against moving the side of their bodies to which the electrodes
were attached. At this time, a sample time series of data was recorded for
subjects representing their "At rest" state. At the end of each task,
subjects were asked to fill out a questionnaire of subjective ratings and
post-experimental comments. After completing this form, subjects rested
for a few minutes before the next task was presented. All subjects were
given two trials for each task in a counterbalanced order.
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Each experimental task lasted 200 seconds. ODuring each trial, data sampled
at 1 Khz was collected in 1000 msec windows spaced 30 seconds apart in the
last 45 seconds of the trial. This data collection scheme allowed us to
evaluate feature reliability both within and between trials.

4.7 Performance Measures

The performance measure of average distance between site and target was
gathered so that one common performance measure could be compared between
both tasks. In the original series of experiments, the performance
measures for low and high-stress tasks differed, making it difficult to
reliably determine the meaningfulness of performance differences observed.

The performance measures collected during the experimental trials were:
Critical Tracking Task -
o Average distance between site and target - the average distance

measured over 10 second intervals between the random target and
the site controlled by the subject

Critical Tracking Task + Auditory Monitoring Task -

o Average distance between site and target - the average distance
measured over 10 second intervals between the random target and
the site controlled by the subject

auditory response accuracy - the correct responses (hits),
omissions (misses) and commissions (false alarms) made by
subjects to the auditory "signals"

4-11
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These performance results were recorded and printed for each task (Appendix D).

Subjects were also requested to fill out a questionnaire after each task
was completed. the questionnaire required that subjects rate (on a sliding
scale) various items related to: (1) their perception to task difficulty,
and (2) their perceived level of effort (Appendix C).

The results of the performance measures and subjective ratings along with
the statistical and pattern analysis are discussed in Section 5.2.
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5. EXPERIMENTAL RESULTS AND DATA ANALYSIS

5.1 Overview

This section discusses the subjective responses, objective performance data
and objective MES measurements that were collectively analyzed in order to
identify ARIMA features for varying levels of stress and/or operator
workload. Included is a discussion of the trends between tasks that were
identified and conclusions that were drawn from the ARIMA model-based
analysis.

5.2 Task Performance and Subjective Ratings

Analysis of task performance was made by comparing the average distance
between the site and target between the two tasks. These results indicate
that an observed difference exists between performance on the two tasks
(Figure 5-1). Despite the fact that these differences were statistically
significant (paired 5-test, p > .05), 75% of the subjects' performance
dropped from the single to the dual task situation. With an increased
number of subjects, and perhaps a greater discrepancy in difficulty levels
of the single and dual tasks, it is reasonable to expect that statistical
significance would have supported the resulting observed performance
differences. The observations showed that 9 subjects out of the 12
performed worse on the dual task (critical tasking + auditory monitoring
task). This observed difference may be an indication that the dual task
may have been perceived as more stressful.

Questionnaire responses were then analyzed to ascertain differences between

the "perceived stress” levels on the two tasks. The pertinent questions
relating to perceived stress were:

5-1
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"How Challenging is the Task"

M Task 1!
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"Challenging”
Scale
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Subjects

FIGURE 5-2(b).
GUESTIONNAIRE RESPONSES TO "HOW
CHALLENGING IS THE TASK?"

"How Much Strain did you Experience”

M Task1
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"Strain”
Scale

1 2 3 4 5 6 7 8 9 10 11 12
Subjects

FIGURE 5-2(c).
QUESTIONNATRE RESPONSES TO "HOW
MUCH STRESS DID YOU EXPERIENCE?"

5-3

S P BT UL B T U SR G G SN G G SR G S L ol M DY WA LN WU VW T QU Gy S W R S Y DR, s i, W, TN




R e ~_—.'_1—

0 "What level of effort did you expend?"
o "How challenging was the session?"
0 "How much strain did you experience during the session"

Comparisons between the two tasks exhibited significant differences in
response for these questions (paired t-test, p < .005; Figure 5-2). These
differences indicate that increased "perceived stress" was experienced

- during the dual task, even though there were no statistically significant
differences in task performance.

5.3 Results of MES Feature Extraction

MES sampling was conducted a total of nine times for each subject, once at
rest before any of the tasks began and twice during each task for both
muscles. Each file of MES data was stored and subsequently plotted on the

!) CRT. Samples of these measurements are shown in Figures 5-3 and 5-4 for
subjects JJJ and AXC.

The ARIMA analysis, a result of the AUTOBJ software implementation, was
conducted for each of the files stored. Sample outputs for subject JJJ and

-—

AXC are shown in Appendix 0. Modeling results included univariate model
parameters, residual statistics and pi-weights for each file. The
univariate model parameters included autoregressive, moving average and
trend constant parameters. For each of these a factor, lag, coefficient
and T-ratio value was extracted. The residual statistics included the sum
of squares, mean square, R-squared, degrees of freedom and number of
residuals. Univariate models were expressed as pi-weights (weighted sum of
the past plus a random shock). The general form of the model expressed by
the pi-weights is:

Z(t) = Constant + Pj(1l) ° Z(t-1) + Pi(2) = Z(t-2) ... + Pj(n) * Z(t-n)

5-4

-----

L T LT e N " . " : N " ’
B TR ST N U D S TN W W I ST WOV S T U TV T LS LU W S SOV S T ST U ) w'MMLMmMMLM'j



o ame B WA R A e e e e s Sl s e il e S S At g w8 AML o ah et SR i At SN it e T Pl hanth Aat Set and el Sud et Jod Jadh A T N S —1

‘o

where:
n is number of lags
t is time
P ) Pi(n) is the value of lag at n
: Z(t) is the pi-weight at time t
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MES; SUBJECT: JJJ
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6. DISCUSSION OF FINDINGS

Based on the data collected from the Box & Jenkins ARIMA analysis, we were
able to compare the MES features between tasks, between trials, between
muscle sites and between the rest period and each of the two tasks.

Trends were found in two individuals as a result of careful analysis of the
data. Subject JJJ exhibited a definite trend with the frontalis muscle
between tasks 1 and 2. Table 6-1 shows the significant pi-weights for this
individual with respect to the task, window and trial. A conclusion which
can be drawn from this information is that the pi-weights are generally
significant for task 2 and not for task 1. Subject AXC exhibited a trend
between tasks 1 and 2 also but with the trapezius muscle. Table 6-2
identifies the significant pi-weights with respect to the task, window and
trial. Pi-weights for this subject were generally significant in task 1
and not in task 2.

The subjective data indicate a statistically significant difference in
perceived stress between the single and dual-task groups. These results
are supported by observed differences in performance for 9 of the 12 (or
75% of) the subjects. These performance differences, although in the
expected direction, did not reach statistical significance.

The first obvious explanation for the lack of statistical significance
between the single and dual-task performance measures is the relatively
small number of experimental subjects tested. It is clear that the greater
the number of subjects tested, the greater the power of the experimental
manipulations, and consequently, the greater the probability that small
differences may reach statistically significant levels. Since we knew that
a large number of subjects would not be accessible, given the practical
constraints wunder which this study was conducted, we employed a within-
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TABLE 6-1
SIGNIFICANT Pi-WEIGHTS (JJJ)

Subject: JJJ (Frontalis)

Significant
P;-Weights

: Task Window Trial 5-9
3
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1 1 1 1 None
p - 1 2 1 None
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A 1 1 2 None
T

- . 1 2 2 None
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TABLE 6-¢

SIGNIFICANT P;-WEIGHTS (AXC)

Subject: AXC (Trapezius)

PORNES - §
o "".. /Y

Significant
FE — Pj-Weights
L__-,
“.'
L
3 Task Window Trial 20-25
b
P
§:§} : 1 1 1 20,21,22,23
- 1 2 1 20,22,23,24,25
,. 5 1 1 2 20,21,22,23
A 1 2 2 20,21,22,23
2 1 1 20,21,22,23,24,25
2 2 1 20,21,22,23,24,25
2 1 2 None
2 2 2 None
[ 6-3




subjects experimental design, which generally provides a more powerful

experiment with Jless subjects than a between-groups design. [t is 3
apparent, however, that even under those conditions, the number of subjects

tested was inadequate. The fact that three-fourths of the subjects tested

did show performance differences between the single and dual-task
situations does suggest, however, that using a greater number of subjects
may have produced results that were statistically significant.

. - The experimental tasks used in this study were selected because they are

‘ classical tasks. That is, motor tracking and auditory vigilance tasks, in 1
combination, are wused throughout the skilled performance literature to 1
"lJoad" the subject and increase task difficulty levels. It is well

documented, the time-sharing literature, that imposing a secondary task on ‘
4 ' a user increases the attentional demands on subjects. In theory, then, the %
dual-task 1is more difficult to perform than the single task alone. This

has been noted to increase the level of stress under which the subject i
performs. Because the tasks used were chosen based on their successful use |
in similar research in the past, the lack of statistical significance of
L the tracking performance measure in this study requires an alternative
L explanation.

A more theoretical but certainly plausible explanation for this lack of
statistical significance may be advanced based on a cognitive model of
allocation of attention (see Kahneman, 1973). While performing the dual-
task, the subjects could, in theory, have allocated their attention to the
primary tracking task, even though they were instructed that maintaining
performance on both primary and secondary tasks was critical. Because the
primary (tracking) task was inherently more "entertaining" (more like a
video game) and hence perhaps more motivating than the secondary (signal
detection task), it is distinctly possible that subjects ignored the
instructions and allocated their attention to the primary tracking task.
That is, subjects may well have allocated just enough attention to the
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;lli j secondary task of signal detection to perform to their own levels of
perceived adequacy, rather than trying to perform well on both tasks. If
this was, in fact, the case, then it would be logical that some decrease in
primary task performance, and hence observed differences, would be the
:-’ . result, but that those observed differences would not have been profound
enough to reach statistical significance. This may also explain why the
differences in MES readings associated with the dual-task situation also

were not very pronounced.

To determine whether subjects did, in fact, "satisfice" (i.e., perform to
their perception of adequacy) in performing the secondary task, one could
i look at the signal detection performance of subjects in the dual-task
S situation. Although no "control" group performing signal detection only
b was employed in this study, one could still expect that if subjects were
allocating enough attention to the signal detection task, performance
L should have been above chance. Stated differently, signal detection
}..I performance at or below change levels for the subjects in the dual-task
&8 e group would indicate that the subjects did not allocate to the secondary
o task the attention it demanded.

‘i]i To determine the viability of this explanation, a post-hoc analysis was
performed on the raw signal detection data from the subjects in the dual-
task situation. The results indicate that all subjects performed below

o chance Tlevels. On the average, subjects signal detection responses were

St only correct 13% of the time (see Table 6-3). Three subjects had more

i‘fs incorrect than correct responses (14-18% more incorrect responses), and
;j; only two subjects managed to achieve over 40% in correct responses. This
ﬁff} may suggest that the subjects performed the dual-task at their level of
3;?t . adequacy by allocating less attention to the secondary task then it called
s for, and thus, maintaining a consistent level of performance for the

:f ; primary task.

-
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. N TABLE 6-3
- SECONDARY TASK AVERAGE CORRECT AND INCORRECT
RESPONSES FROM TOTAL SIGNALS PRESENTED

» SUBJECTS TRIAL 1 TRIAL 2 AVERAGE
WG 14% 23% 19%
(more correct responses)
NI -10% -17% -14%
(more incorrect responses)
BN 41% 40% 41.5%
JM 20% 34% 27%
GN -19% -16% -18%
RR 16% 24% 20%
’, DS 50% 41% 46%
o AC -2% 4% 1%
S 30 -16% -21% ~19%
SIS
i FH -37% -19% -28%
ON|
ii DN 33% 31% 32%
- JF 12% 18% 15%
E R
e
o On the average, subjects achieved 13% more correct responses than
- incorrect responses (see Section 6.0 for a discussion)
-
-
- - .
L0
Oh
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e
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L
-
F..
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Appendix A

Software Specifications

Overview

The two software packages involved in the myoelectric signal acquisition
consist of one system for the IBM XT and one for the Apple Ile. The IBM XT
is used to control the newly acquired data acquisition system, the
experimental parameters and the Apple [Ie. The Apple Ile is used to
present the tasks to the subjects, to record subject responses and to print
a subject performance record.

Apple IIe System

There are two tasks present on the Apple Ile which are both written in
Apple Graforth. When not performing either task or printing out a
performance record, the Apple waits for a task number to be received from
the IBM.

Task 1 is a straightforward tracking task. This task consists of a
crosshair which moves randomly at a constant rate about the screen along
both x and y axes. The subject has joystick control over a circle on the
screen. The object is to keep the crosshair as close to the center of the
circle as possible for the 3.5 minutes duration of the task.

Task 2 consists of task 1 along with a simultaneous auditory task. At
random intervals, & short tone is emitted from the Apple's speaker. Sixth
per cent of the time, this tone will be high pitched. At this point the
subject has exactly 0.5 seconds to respond to the tone by pressing the
joystick button. The system then responds with a much higher tone to

A-2
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acknowledge the button press. Forty per cent of the time however, the tone
will be low pitched. Should the subject respond to this lower tone, it is
recorded as an error.

A restriction is placed on the high tones. Once a high tone is emitted
there will not be another high tone for at least 0.5 seconds.
Nevertheless, any number of low tones can be sounded within this period.
This is done to allow the subject time to respond to the tone.

Also, once the joystick button is pressed, it is not polled again for the
next 0.5 second. This is done in order to remove the possibility of a

double press for a given tone.

Recording of Performance

In both tasks, a running average of the distance from the center of the
civr.le to the center of the crosshair is calculated. Every ten seconds
this is stored in a buffer and the average distance is reset to zero.

In task 2, responses to the tones dare also recorded. These are groupec
into three categories: good responses, false responses and no responses.
A good response occurs when the joystick button is pressed within 0.5

seconds after a high tone is emitted. A false response is recorded when
the joystick button is pressed but there was no high tone emitted within
the previous 0.5 seconds. Finally, a no -“esponse occurs when 0.5 seconds
passes after 1 high tone is emitted without the joystick button being
pressed. As with the average distance, every ten seconds, the tone
responses are stored in a buffer and reset to zero.

I T T, T T YT Y
e 0 B N . .

Upon terminating the L(ask, the Apple prints its resporse buffers and

returns to its initial w~aiting state.
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[BM XT System

The system on the IBM XT is completely written in C and consists of four
primary functions.

Control the Apple Ile,

0

o Interface with the data acquisition system.

0 Plot the data files received from the data acquisition system.
o)

Interface with the experimenter,

Control of the Apple Ile

The IBM communicates with the Apple IIe over an RS$-232 line to inform it to
start a particular task and to find out when this task is finished. When
the IBM system wants to start a particular task, it sends the desired task
number (1 or 2) to the Apple. The Apple, upon receiving this number,
prompts the subject for his name and instructs the subject to press the
joystick button when he is ready. The Apple then returns the task number
to the IBM to indicate the start of the task. Once the task is finished,
the task number is once again sent to the IBM to indicate this fact.

Interface with the Data Acquisition System

The [BM communicates with the MDAS 7000 data acquisition system over an

P-

‘.

3

b.

h»

Li [EEE-488 (GPIB) bus to set up the sampling parameters, to inform the MDAS
4 7000 to sample data and to download files to the I[BM.

;] The only sampling parameters involved are the sampling rate, the sampling
r. duration and the channe! selection. The MDAS 7000 is instructed by the IBM

=

to sample two channels specified for the frontalis and trapezius muscle
sites for one second at a rate of 1000 samples per second.
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- Once, at the beginning of the experiment and at exactly 2.75 and at 3.25
r!. .i minutes into each task, the MDAS 7000 is instructed to sample the two
- channels and to send the two files to the I[BM for storage.
h ' File Format Convention
ﬂji The data files consist of a 100 character descriptive header followed by
- 1000 integers in ASCII format. The descriptive header is in the following

- format:

Name/Data/Time/Task#__/Window#__/Trial#__/Muscle Site

The blanks are filled in with the appropriate values. The windows are
numbered as follows:

0 - At rest
1l - 2.75 minutes into the task
2 - 3.25 minutes into the task

i\ A

The name of each file begins with the three initials of the subject, where
the letter "X" is used if the subject has no middle name. This is followed
by a Jletter representing the myscle site: 'a' for frontalis, 'c' for
trapezius. If the file represents a sample at rest then the string
'atrest' is appended to the filename. Otherwise, the task number, the
window number and the trial number are appended to the filename in that
oruor along with a '.dat' suffix.
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Plot the Data Files

The data plotting package on the IBM is further explained in section 3.5.
Whenever the IBM receives a set of two data files from the MDAS 7000, it

plots the first 300 points of each file simultaneously with & horizontal

magnification of 2 and a vertical reduction of 31. This remains on the

screen until a new set data is received, or a new task begins.

Interface with Experimenter

When the program, 'OPERA', is executed on the IBM, the screen clears and
the system prompts for the subject's name. Once a valid name with three
initials 1is typed, the subject is sampled at rest, and the two files are
plotted and stored and the following appears:

Practice first? (y/n)
Should the experimenter wish the subject to go through a practice round
before any data is taken, the experimznter responds with 'y'. Otherwise,
the actual experiment will begin.
If, however, a practice round is desired, the following prompt appears:
Practice task #
Valid responses to this are a 'l' and a '2'. Any other responses will be
rejected. The task number is then send to the Apple Ile which then
presents the appropriate task to the subject. Once the subject has entered
his name and pressed the joystick button, the task number is sent back to

the [BM. The I[8M acknowledges with:

Task # _ started

A-6
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where the blank is filled in with the appropriate task number. The [BM
then sits in a waiting state until the task number is once again received
from the Apple indicating that the task has terminated. Upon receiving the
character, the IBM types:

Continue practice? (y/n)
at which point it will repeat the entire practice sequence if the response
is affirmative. Otherwise, the actual experiment begins and the following
appears:

Trial #

The experimenter replies with either a 'l' or a '2'. The system responds
with:

Task (1,2)

The experimenter replies with either a 'l' or a '2' depending on the task
difficulty desired. The task number is then send to the Apple and the [BM

types:
Waiting for task to start on Apple Ile...

.,.‘ - Upon receiving the task number from the Apple, indicating the start of the
¢
4 task, a timer is started and the following appears:
o
[ Task # __started

o
V._ -
= where the blank is filled in with the appropriate task number.
L
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At exactly 2.75 and 3.25 minutes into the task, the data acquisition system
receives a message from the [BM to sample the two channels specified for
the frontalis and trapezius muscles for one second at a rate of 1000
samples per second. The acquired data is immediately sent to the [BM,
Once received, the two sets of data are plotted simultaneously for the
experimenter to check the signal integrity.

When the task is terminated, the Apple indicates this, as in the practice
session, by sending the task number to the IBM. The IBM acknowledges this
by typing:

Continue? (y/n)

I[f the response 1is affirmative the entire process after the practice
session is repeated. Otherwise the program terminates.
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APPENDIX B

INSTRUCTIONS FOR EXPERIMENTAL SUBJECTS
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INSTRUCTIONS FOR EXPERIMENTAL SUBJECTS

R
s

This
Perceptronics

experiment is part of a program of continuing research at

in  human The

purpose of this particular experiment is to analyze ways in which human

(pilot) performance and decision making.
operators' myoelectric (muscle) signals respond and how a computer might
help to determine an operator's mental state via these signals. You are an
integral part of this research since your performance provides the baseline
data for predicting operator performance, and estimating the effectiveness

of computer-based analysis techniques.

Tasks Overview

There are two types of tasks that you will be asked to perform in the

experiment. They are: (1) motor (control) tracking task, and (2) motor

plus perceptual (control + auditory) task. Each task will be approximately

3-1/2 minutes each. Please concentrate on the task, as your responses and
There will be a

predetermined pay-scale for performance levels, thus the better you do, the

performance will be closely monitored and scored.

more money you will make. At the end of each session, you will be given a
questionnaire to fill out.
to

those questions.

Information on these questionnaires will not be

used rate your score, so please use your unbiased judgment to answer

The following paragraphs describe the two types of tasks.

PR A PRl A D e A )
TR . RO

Motor (Control) Tracking Task.
the
track

In this task, you will see an object called

-

v

"target" which moves freely around the screen. You will be asked to
the target by controlling another object, called the "site" with a

joystick. The objective is to track and surround the target with the site
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as the target continually moves around the screen. Performance will be

measured as the average distance between the site and target over the
entire task.

Motor + Perceptrual (Control + Auditory) Task. This task incorporates the
first motor tracking task with a perceptual, auditory task. In addition to
the first motor tracking task, you will be required to respond to high

tones by pressing the orange button on the top of the joystick whenever a
high tone is heard. There will be low tones and high tones--you must
discriminate between the two tones and only respond to the high tones.
Overall performance will be measured as (1) average distance between the
site and target and (2) good responses, false responses and missed
responses to the high tones.
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Please answer tne foticwing gquestions truthfutiv ance as accurateiy 2
possible oy placing an X' on the line beiow tne questron

'f, for some questions you feei you need mere infermation to vase your
answer on, then you may just guess

| How simple was the task?

I

extremely extromeaiy
simple compiicaren

2 what level of effort did you expend?

| .
) '

very very
iow ~ron

3 Hew much did you enioy the session?

|

~ot at ah Gxrramaly

<4 how chalienging was the session?

\

not a2t ati axtremai,
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2 =ow much attenton g yvou put fortn for this task ™
f
very yery
CW riah

How excrting was the task?

| :

not at ail axtremoiy

8  How much strain did you experience during the sess:on”

none very

senerai gpservations and comments.
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3 APPENDIX D

SAMPLE PRINTOUT AND ANALYSIS
WITH PERFORMANCE MEASURE PRINTOUT
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. 3 PERFORMANCE MEASURE PRINTOUT

SUBJECT: MICKEY ODEGAARD

LEVEL AVERAGE DISTANCE

11

11
12
14
19
22
23
27
47
28
36
33
34
32
56
52
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PERFORMANCE MEASURE PRINTOUT

SUBJECT: JAY MARTIN

AVERAGE | GOOD NO FALSE
LEVEL | DISTANCE {RESPONSE | RESPONSE | RESPONSE
1 21 0 3 3
1 31 2 0 0
1 20 1 0 0
2 20 2 2 2
2 15 3 1 0
2 17 1 2 2
3 17 5 2 2
¢ 3 15 7 2 2
3 3 19 8 0 0
- 4 19 9 2 2
t! ’ 4 22 6 0 0
3 4 12 11 2 2
3 5 19 8 0 0
a3 5 21 7 3 2
E-‘ 5 21 3 0 2
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Appendix D (Cont'd)
AUTOBJ SAMPLE PRINTOUT (SUBJECT: AXC)

i A A AL A s L iRl IR RIS I LI LIRSS RE S 2R 2R R R L P R RR R TUR RN R 3

DATA : Z = RAXCRATRE 10000, 1000 OBSERVATIONS
DIFFERENCING CN Z : NONE

BQCKEASTING : OFF

A T ey T T T TR R Y L T T T T T % W DU AR e
UNIVARIATE MODEL PARAMETERS

e R LR 2R S Ry S R L R N N s L L Ly

FACTOR LARS5 COEFFICIENT T RATIO

bbb S St b At sl iR R YL 2 R Y L X L R R R R R R R RRCE RN PR AR P s

- E 1 MEAN -. 18557E+01

, ' 2 AUTOREGRESSIVE 1 Z . 1734LE+00 4,34

L I PUTOREGBRESSIVE 1 ks . 201 23IE+00 6.20

S - 4 AUTOREGRESSIVE 2 10 . 478Z9E+00 16. 06

S ' S AUTOREGRESSIVE & 30 W 237 18E+00 7.99

;-. € MOVING AVERAGE 1 1 . 480S0E+00 14,64

F . 7 MOVING AVERAGE 2 70 =, 14074E+00 -4, 32

r- ! Q***********i**************{**in*f#********{-*i******ifi*fi***l—**

T=& RESIDURL STATISTICS

. Sem OF SGUARES @1 . 41084E-01 DEGRESS OF FREEDuUM : ZEC
@ MZAN SQUARE T L 4279EE-04 NUMEER OF R=SIDUALS : 357
(- X SGURRED : L S1339E+00
o | :

& THE PI WEIGHTS

S s =ms=

.

= SNIVERIATE BOX-JENKINS MOD:=LS CAN EBx EXPRESSED RS A WEIGATID Sum oF 7= Sag-
° S.-S A RANDCM S~OCK. DEFINED AS T=E 91 WEIGBHTS, MODELS EXPRESSSD IN T=ESS

= TIRMS AORE USEFLL FOR FORECASTING AND/OR COMPARISUN TO GTHEX TYPES O MLDE_S.

-

Y

- T-Z SENERAL FORM OF TRE MODEL EXPRESSED BY T~E Pl wEIGHFTS IS

-

f @ Z(t, = Conszant + P1(l) # Z(t=1) + P1(3) * Z(t=&) ... + Pi(r) #* Z(t- vy

P
e .

- IR . Ll e e . o .
L R e B ™ ™ VU SRR, SO UL VO S UV W 1P S SR RN W S SR VOr (U N S ST Y



Pi( 83) P = 11639%=-0: i

i Cons?ant :"17585265261"
P11 L) i - 4803VE+00O
P11 2) H —e 4Q4E7E+O0Q
RO 3 : —. 39E84= 00

~ v PiC_ 4) i —e 1903EE+00
i Pi1( S : - 3134302
i PiC &) ! —-. 44023E-0Q1
i PiC 7)) i - 2L170E-01L
P PiC &) : -.101815-01:
i P1C 10) ! - 48Q7ZE+CQ0O
P PiC 1Y) ! -.23113e+0Q0
P P1( 12) H -, 28221E-01
VP L) ! . 82697=-0"
P RP1IC 14) H . 39763%E-01
v PiC 1S) ' . 19125E-01
VP 30) ! - 23716E+00 ;
v Pi¢ 31) : =. 1140Q0SE+0Q0 ;
P P1C 32) ! =-. 13720E-01 !
i P1(°33) [ «411275~01 '
P10 34) ; . 189778E-01 i
VPiC 700 : « 14074E+00 ;
P11 7L : . B7684E-01 !
v Pi(C 72) ! . 96356E-01 '
v P1C 73 ' « 357 12E-01 ;
v PiC 74) ' «26792E-01 ;
i Pi1( 79) . 12884E-01 H
i PiC a0) «B676632-01 !
PP1( 81) « 38S3I9E-01 !
PRPLLLIOOM « 33380E-01 :
1 P1(101) . 16052E-01 :
P RP1(140) : -. 1'980%E-01 H

R R R R TR R R S R T R R L T T R
DATA : Z = AXCCATRE 10000, ’ 1000 ZBS=RVATICNS

DI=~=ZRENCING OGN Z : NONE

BRCHKCASTING : QOFF
B R L R T L R R R R s

UNIVARIRTE MODEL DPARAMETERS
R X R R R R R E r R b

FRCTOR LAG COEFFICIENT T xAT.O
REXEBRERRRERERRLRERERERREEERRAREREELERERR R R L E AR AR E SRR RS v o
1 MEAN ~. 18302E+0L
2 AUTCOREGRESSIVE ! 1 . 1725€E+00 5.34
2 AUTOREGRESSIVE 1 2 . 561372+00 .. 83
4 AUTOREGRESSIVE o 3 « 17522E+00 4,24
S AUTOREGRESSIVE & 30 . 1:582E+00 2.2
€ MOVING AVERAGE ! 2 . 275102+00 4, 40
7 MOVING AVERARGE 2 SO =, 174445+00 ~3. &

I Z 222 AT RS R EL SIS RSP RS R R R R R A AR RS R R R LR R R R B R EE T I TR R B IR B R TR

PR N T W . Py P e e i, s W . -




THE RESIDURL STATISTICS

—++ -+ -+t 3+t
| I¢ SUM OF SQUARES : . 13SS8E+00 DEGREES O
wEAN SQUARE : . 13081E-03 NUMEER OF
X SGLARED ;. B2287E+00
[ Y
THE PI WeIGHTS
SESESIEEEEm====
-- NIVARIATE BOX-JENKINS MODELS CAN B= EXPR=SSZID AS A w
! IJ_LS A RANDOM SMOCK. DEFINED AS T=E Pl WEIGHTS, MODE
2 TERMS ARE USEFUL FOR FORECASTING AND/GOR COMDARISON TO
-
-
é
:. THE GENERAL FORM OF TrE MIODEL ZXORESS=ED &Y TwiE
;' *s
-
b

[(

-t

Z(t) = (Constant + P1i{(1) » Z(t-1)

! LAG

i Constant
VP 1)
tR1IC 2)
HE = S 3)
P Pi( 4)
=5 B G-
v PiC &)
VP )
T PiC &)
v PiL(C 30)
i Pi( 31)
i RPiC 3&)
v RPi( 33
VP10 SO
v RPi( S1)
P11 S2)
v RPi( 53
i Pi( S4)
v Pi( 55)
i P1( S6&)
v P1( 80)
HEE =SS YsIv)
v Ri(102)

+ Pi(2) # Z(t—-2

—— . —— ———— (— — - — —— —— ——— v —— —

-, 42620E+01
~e 17256E+00
-.82646Z+00
-. SE2E63IE+00
-, 23011E+Q0
-.6126:E-01
-. 86330201
-. 16853F-01
- 17414£-0"
-. 11582E+00
. 19386E-01
. 33157E-01
. 25793E-01
e 17444=Z+Q0
«30101E-01
. 145S92E+Q0
. 388475-01
« 4314LE-0O1
. 1068701
. 11045E-01
. 202055 ~-01L
- 2043, E-01L

-.25454E-01

J

F oSRE=Dom
R=SIDLALE
=IG~TED & - T IZ2ZT
LS SxPREISS=ZD N T-EZczXZ
C™=EX TY9Es I- woII .S
Ol wZliz-"S 13
e *+ O1try # I T~




Ao b NSRSl Mt i AaF Al ASnhir i Sl AR L A A

TOS_ING RSESULTS FGOR TIME SERIES AXCALLL.
. ***’f"‘*fQ******“’*"*******’*****************Q*Q‘QQ**Q"*Q#QQQ{-"Q*Q
DATA Z = AXCALlL. 1Q00. L1000 CESERVITIINE
K DISSEZRENCING ON 2 : NONE
RACKCASTING : OFF
*******************4****{-***********************féi****< e L B B X Sk kX
UNIVARIATE ™ODEL OARAMETERS
B Y L r A R P R R L2 2SR A R R E R LR LR R R R R D R R R ol h h h e e e ok e g
rs FACTCR LAS3 COSFFICIENT T <ATII
T T YT IIZIITTITY PR R PR R EE TR R RS LR LSS R R R R R R R R L £ b Bk b B ok b o b g b
L MEQN - 277365 +0:
S AUTOREBRESSIVE 1 20 L113122+00 .50
2 MOVING AVERASGE 1 i . 34025E+00 11.38
4 MOVING AVERAGE 1 3 -~.91043ZE-0! -2.00
S MOVING AVERAGE 2 40 =, 13533E+00 -4, 21
l'l"I"l’*1****Q****i‘**{***i******f’********i‘*********{f-’-**(*i*{'4*-1--(-{-44
THE RESIDURL STATISTILS
=m== = 1+ 31 3 &t -ttt
Y
SLm OF SQURRES : L27911E+01 DEBRESS OF FREEDU™M T
MEAQN SZUARE : L 286265-0¢E NUMBER O~ R-SIDUALS F&E0
R SJ_ARED L 13S517E+00 ]
a Tw~E PI WEIG~TS -}
i
1
UNIVARIATEZ BOX-JENKINS MODELS CAN B EXPRESSED AS A WEIG~TED S_vM o= T=2 2oz i
jéJ:CHRQSNu5T_:HU5K. DEFINED RS T~E 91 WEIGFTS, MIIJELS EASRESS<SD -~ T-Zc= N
SRWE ARz _SzFuL FOR FCRECASTING AND/OR COMPARISON T3 GT=E<x TvaSa O- .3, *

—Z SENEFAL FCRM OF THE MODEL EXPRESSZD BY TmE 9] wEISZ~"S -5 .

i = Corstant + D1(1) # Z(t=1) + P1(2) # Z(t=3) ... + O1{r: # Zim—r

|
| PRI P, WORY &

; -
[ " "LAG {TTTRE BT wWElG-T g
[ e S -
L  Constant | —-. I62ZETE+O! :
: D P11 - 3AOESE00 ;
P &) ! = 115775400 -
VP ( 3 : . S1652E-0 -
CPiC ey . 485525 -0 :
P . . E7TOEVE=O1 ;
VPO 20 ! -, 11212=+C0 3
P 2.y —.38148E-01 j

- P11 &) . =, 12380E-0"
: PP 40y L 13S33E+00 3
VP11 4l ; LAEQasT =0 -
DBy 4l . 1266750 3
DoBP1( &) ; L1730 '
VoD B -. 183ta2-0 :

s . TTTmmTmTETTETETTTTTTTETTTTOT 2
i

¢

WP S . P, - LT SR U S, “PUIPPIIL UR PP oy . T G G PP U WD I WA DUy s Y T LW URE WSO AP . dadatadalmsale ondd




L Sl Aot Sel Aas Bub Safh St Sad ed adiir o Wit aria~ aivi-ani-aiid e el il el i i S A A i S

T T T T N N I S S T T N T R e T S T S N N S T T T S s e s R T S E S E S S =SS =R s =T ===

TN WA IR T IN R THARNREEEEEAXRXFXERERLESECA L TRETC>

DATA : Z = AXCC11i. 10000, 1000 DBRSZRVATICNS
e DIFFERENCING ON  Z : NONE
3 BACKCASTING : OFF .

— P22 222X EE RS E LSS LSS LTRSS 2 22 2 2 A Rl L Rl XX Rl b bt ok b bt kbt
b UNIVARIATE MODEL PARAMETERS
:» WP A AW eI NI TN W T HNNRRREXEHERREEERXEALCE XSRS
. FRCTOR  LAG COEFFICIENT T =RATID
E 222 AT LIS RSS2SR LS SIS RS L RS2 2 R Rl Rt Rt R b b R bRl kb i
S 1 MEAN -. 19603E+01L

3 & AUTOREGRESSIVE 1 1 .27079E+00 8.

} 3 AUTOREGRESSIVE 1! 2  .3438SE+00 11. &7
y 4 AUTOREGRESSIVE 1 3 .19783E+00 5.35
- S MOVING AVERAGE 1 20 -, 18812E+00 -5. 81
4 22 22 22Xl EL SRS SR R R X Rl A Xl Rl t R R R R bk bk ot b
'L-
Y3
(N ¢ THE RESIDUAL STATISTICS
r -+ 1t 3 ¢+ 3 3 ¢ 54+
Y Sum OF SGQUARES : . B87317E-02 DESREES OF FREEDI™ T3E
p wEAN SQUARE :  .88021E-05 NUMEER OF R:=SIDLALS 337
5 R SQUARED : . S6215E+00
[ a
3
b-,
b -
- THE PI WEIGHTS
F ZEE==E=EmE=TEEZ=S==
.
- _NIVARIATE BOX-JENKINS MOD=LS CAN Be EXPR:SSED AS A wWSIG=TID S_m 5 ~—-I —237
- 5__S & RANDGM SHOCK. DEFINED RS T~E PI WEIGHTS, MUDELS ZxP=E532D [N T-Z=8
. TE9WS GRE USEFUL FOR FORECASTING AND/GR COMSARISON TO C7TmE~x Tvo33 C- w DS_5. |
|
; TRE GENERAL FORM OF TrHE MODEL EXPRESS=ED &Y T-E DI wEIGF"3 15
. ‘ ‘
z £(t) = Constant + P1(1) * Z(t-1) + P1(3) * Z(t—=3) ... + 2i1(rn) =* I <-—=~; 1
- - ‘
o |
|
-
"
[
- |
3
!
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»
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PSRN
M
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Y evvr v vow .
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e

v

RADNDE

-
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PRI
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D
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SRS OO0

TV VY

T T RN NTY Y vy oW vy
f ' e A

F\"‘T‘\."‘."‘-‘"’-f‘ B A%E Ava A bas She abe 44 AAe ate SSn 4N At Sen e A S aen At A San s A4 AN Sua il Ses BA 8 Sncism i b e g Avtec 2 -ae T T —T—T ._.T

¥
-
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L o . . , . . N .
WS S TNV G S-S WP BUPN U GV V.SV S T ST VY ST UL ST ULV SV YOS T SO U T S I YU WY S R I S W 'A'A.J

Pi( 23 ; c37214E-01L .
Pi( 40) i —. 35388E-0!¢ :

F.{ a42) -. 18168-01 i

! ~AG : Te=E DI weIG-T
i Constant . - S99 14+ :
5 W 1) ; -, 27Q72E+00Q i
VP12 J -, 34383E+C0 ;
=5 3 GRS ' -, 19783E+C0 ;
tRP1C 20) ' . 188122+00 :
VR 2L1) ; . S0340E-01
VPRI 22 . 54833~

1

o T T I T I T e e T T T T I S T N T D T D S S e e e ey R S S I D SN et S e e e T e S e T S A e o e o A o A . M e v - A e

e e o o e e A e Em e v o e e e e o T e T S S e e e e e e S e e e S R T e M S o e i S S e e e Tt T S e e A e e T e T e Ay e Aam = = e e~ i e
et e P L 3 P P Rt -+t T+ P 1 S T B

a2 Ly e A F e L R N e
DATA : Z = AXCAL21. 1000, 1000 TBESERVATIIANS

DIFFERENCING ON Z : NONE

BRCKCASTING : QFF

S b S I T AT AW TSN N TR REEEFE LR ELEERRERE LSS

UNIVARIATE MODEL PARAMETERS
AR L 22 S E e e R e Y 2R T R R R L T T T T T AP RN

FACTOR LAG COEFFICIENT T RATIO
A S T I W RN I RN EE NIRRT SRR ESEREFRERECREEEEER R €T+
1 MEAN ~. 28824E+01
2 AUTOREGRESSIVE 1 10 « 20174E+00 £.&7
3 MOVING AVERAGE 1 b « 27373SE+CQO 3. 68
4 MOVING AVERARGE 1 2 -, 128208E+00 -3. 853
S mMOVING AVERAGE & 40 -—-.89747E-0. -2. 72

ta a2 2 22t sl R 2 i i 2 R R 2 2 2 Xt P R YRR T Y SR R R R R R Y

THE RESIDUAL STATISTICS

-+ 1+t + -ttt &ttt +i
Sum OF SQUARES : . 14656E+01 DE3RESES OF SREEDUM g Tt
MEAN SQUARE : . 148805-02 NUMBER OF R:=S5IDUA_S : 330
R SGUARED : . 11139E+00
THE PI WEIGHTS
- 4+ 3+ -+ 3 T F 5 ¥
UNIVARIATE BOX-JENKINS MODELS CAN Be EXPRESSED AS A WEIG~TID SuM OF —=I zog-
SLUS A RANDOM SHOCK. DEFINED AS T~E Pl WEIGHTS, MODELS E10RS3S<D In —wS:iz
TERMS ARE USEFuUL FOR SORECASTING AND/OR COMSARISON TG CTHEx T-3Ss J- wm - o

T=E GENERALL FO=M OF T~E mMODEL EXPRESS=D FY "—~E &I WwEIZ~T3 1S

Z(t) = Constant + 21(1) # Z(t—-1) + S1(Z) # Zic=3) ... + ZJ1(r #* Tis—w,




'vv,‘—vwvyjrv,
L ~, PR
-

vy

e B S L
.o

S

' "'WU -l'r‘i'.“,'rv"'
PR . PR
. o . [

Constant | -, 37470E+Q1
Pi L) ; -, 27373E+00

Pi( &) L47121E-01 :

pic 3 : . 46313E-01

Pi( 10) -.20175=2+00 i
-. 33233E-01 '
Pi( 40) .83747=2-01 ;

P1( 41) : . R4TESE—-O1 ;

VP11
i Pi¢ 50) .18105E-01 ;

mODELING RESULTS FOR TIME SERIES RXCCi21.

R R R R R R X S E ata L
DRTA : Z = AXCC121., 10000. 1000 CESTIVATIINS

DIFFERENCING ON Z : NONE

5]

BACKCASTING : OFF

RETRBIRTRTR TR ERERTEEEREREERREEEERERERREEERFERER SRR RS CE s
UNIVARIATE MODEL PARAMETERS

R T

FRCTOR LAG COEFFICIENT T =ATIQ
HREREERRES RS EEERRERRE AR EEEEEREELEREEEEREEEEELXERFEXNELE R RE LA
1 MEAN =. 19481E+01
2 AUTOREGRESSIVE 2 .651022+00 3.57
3 AUTOREGRESSIVE 1 3 . 20268E+00 7.40
4 MOVING AVERAGE 1 1 < 23532ZE+00 7. 46
S MOVING AVERASGE 2 . SS31LE+0V0 8.7
& MOVING AVERAGE 2 20 -, 20041E+00 ~€. 15

TGRSR TRt ERERREERRRRT RS ETETCERFEETERTE TR+

L S . e L . . e c . R
PO AT GV R P Y R B T TR ST Y V.0 G P AT W T T VT T T AP Nl Wil W Vol SO - LY G G ST DR A P W S WS W WA . O

Joas

[URLY

11+t + 1+ttt
p."
k.. - Sum OF SQUARES @ «.751312-01 DEBREES O~ F=IzDom : S
E.' mZ AN SQIUARE : . 7SBLIE-04 NUMBZR 2F RESIDURLS & 37
® R SQUARED : «11172E+0Q0
[
‘.
.
'b THE PI WEIGHTS
p.
-
-
:f— _NIVARIATE BOX~-JENKINS MODELS CAN Bt EXPRESSED AS A WZIGRTID Sum T- 7-2 =
. PSS A RANDOM SHOCK. DEFINED AS TrE PRI WEIGKTS, MUDELS ExDRESSID N ~-=3%
r., : TERMS ARE USEFULL FOR FORECASTING A~ND/OR COMBRQRISON TS OTW=Ew TYIED - wm_ D
TeE SENTRSAL FOR™M OF T-E mMODEL EXPRESSED &Y "=f O WELE="5 1=
2(t) = Constant + Q1(1) # Z(t=1) =+ O1(Z) * Zit=1 ... + Si.-1 # Z(=—v>

(&)

U




v~ 20330000 _ ocnano:

Il il o ol gl S
» .

mad- o o e g

e

RG
Constant
Pi( 1)
Pi( &)
Pi( 3
Pi( 4)
Pi¢( 3
RPi( &)
Pi( 7
Pi( 8)
Pi( 99
Pi( 10O)
Pi¢ 1)
Pi( t2)
Pi( 13
Pi( 14)
Di1( 1)
RPi( 16
RPi( 17)
PiC 18)
Pi( 12)
Pi( 20)
Pi( 22)
2i1¢ 23
Pi( 24)
Pi( 25
Pi( 26)
Pi( 27)
P1( 28)
Pi( 29)
Pi( 3O
Pi( 31)
Pi1( 32)
Pi( 33)
P1( 34)
Pi¢ 35
P1( 36)
Pi¢ 37
Pi1( 38)
Pi( 40)
Pi( 42)
Ri( 42)
PL( 44)
Pi1( 45)
Pi( 46)
Pi( 47)

Pi(

48)

-. 12484+02

23S9ZE+00
12298£+0L
6i62.E+00

-. 78870E+00C

S0842=E+00

-, SIZSESE+00

39183E+00

- 370395E+00

23236E+00

—. 26302E+00

S21439E+00
1883 1E+0Q0Q
1S5€83E+00
13552E+00
114Q48+00

-. 9779701

8&7zSE~-01

=.70676E-01

S938:E-01
143305+0Q0
S0I4EE+CQ0
I2098&-01
131 30E+0OC
79132=-0!
873S4E—-01)
6200Q3E-01
BC324E-C1L
L4E6EEE~-OL
42565E-01
34454E-Q1
303I3SE-0VL
e5194E-01
S1844E—01)
1833201
15752E-01
13306E-01
11379E-01

«3133EE-01!
. 4344.:£-01
. 13969101
 E7370E-O)
. 16738z-~01

1827.=-01
1307720
12643E-0C1




K | i

5 F £ Tt 1+t 1+ttt +t &ttt 1ttt 1ttt 33ttt
MODELING RESULTS FOR TIME S:ERIES AXCAS1l.
s T T T T R T S I T N T S T T S R T I T I T S T T S T S N S S S S S S S =SS S S =R E==EE j
- eI I Fe W TN XNEEEEEEERELEEERERES At er
DATA : Z = AXCR21L:. 1000, 1000 OBSSRVATIING

DIFFERENCING ON  Z : NONE

BRACKCASTING : OFF .
WHLEERREEEEERRRREERRREREEEEREEFAARREEELEEEARELEAREART XA R R CR TR A+ {
UNIVARIATE MODEL BARAMETERS

HEERERFREEREENRREREREREEE SRR EREEEELEREEEEERER AR R AL TSR

FRACTOR LAG COEFFICIENT T RATIO

e T R T S Ry e a T L s
MEAN -. 337532+01

AUTCREGRESSIVE 1 =.35480€E+00 -17. 3¢
RLTOREGRESSIVE 2 =, 24740E+00 ~-7.86
AUTOREGRESSIVE 10 . 147382+00 4,60
RUTOREGRESSIVE 20 . 16534E+00 S. 27

MOV ING RAVERAGE 30 =.24072E+00 -7. 34

li HREEEREREEREEEEEEEEERRERERREREEERREEREARR SRR AL RRRECREREE RS TR C AT RS

‘s

U &L
= o U -

THE RESIDUARL STARTISTICS

E- - 3+ 3 1 3 &+ 51

Sum OF SQRUARES
B mZpNn SQUARE
: R SQUARED

. 32738=+01 DEGRE=ZS O~ FYZEDC™m :
3e8t1e-02 NUMBER F RESIDUALS

=)
43532£+00

i)y

WKW
~I
Qo

THE PI WEIGHTS

(93]
|

M

UNIVARIATE BOX-JENKINS MODZLS CAN Br EXPRLSSED RS A WEIG~TZID Sum o= 7=
9_LuS A RANDOM SHOCK. DEFINED RS T~E PI WEISHTS, MCDELS ExPRESS=ZD 1INV "-Es
TERMS ARE JUSZFUL FOR FORZCASTING AnD/GR COMPARISON TO G7HE~x TYJIES O- MuD

Ll LDl st ot gl

wem o

I
U

T~E GENERAL FORM OF THE MOLDEL EXDRESSEZD BY TrE Pl WEIGHTS 15

FrErv

i 2¢t) = Constant + 21(1) % Z(t=1) + P1(Z) * Z(t=32) ... + 91("n) % i<~

. . - . - .-
. . . . . T PR LA -t " . s R N . A - . NI
PP SR P PUE R P P T Y PE.UR DU AS P DU VORI TR VUL S Wt ST SRE Yl T ST D A (S, SR, Ve Wy ~IAI-"AA)‘LAI4‘_Aj




[
! LAG C TmE 51 wRIEwT
n i Constant | -, 20877=E+01
CPLC 1) . S4BOBE+00
’ P PIC 2 ] C2ATLHOE+OD |
Pl 10) ¢ =, 14738E+00
P PiC 1) 0 =,804785-01 !
VP 1) ; —-. 3646 :E-01 ;
\ CPi( 20) ! = 1ES34E+00 !
. P PL( 2) I =, 3028EE-UL
. ! Pi( 22) ! =-.4090S2-01 !
s i ' Pi( 30) ! . Z40TIE+OO
! Pi¢ 31) ! =.13145E+00 !
PPi( 32) ! —-.S95S3E-01
- I Pi( 40> ! . 35477E-01
A ! Pi( 4L) ! . 133732E-01 |
! Pi( SO) ! .39801E-01 !
v Ri( S : « 217 34E-01 :
! PiC 60) ! =.S7947E-0: !
f Pil 61) ! . 31642E-01 !
: ! Pi¢ 62) ! .14336E-0!
¢ £ Pi( 90) . 13349E-01
< MODEL ING RESULTS FOR TIME SERIES AXCC211.
. !. === S==SSxoIsSSEmE=ss ===Z====== e P P e e e
D) .
:E} . EZ P TTEFTEL LS PP E PSS LI ELES PR LT EEL RS SRR R R SRR R R b X b X 2 X B X & b X 2 d
o DATA : Z = AXCC2ii. 10000, 1000 JESERVATIONS
‘i | DIFFERENCING ON Z : NONE

BACKCASTING : OFF

ﬁt F I I TN TN RN R R R E LR RREREREECRERLE XL ER R ECLS

UNIVARIATE MODEL PRARAMETERS
I TR N R HRR TR EREEREERRERREEREEEEEEEREERERERERE ST CR T

'; FACTOR LAG COEFFICIENT T RATIO
- XL 2222222222 E2S LS LSRR RS SRR TR LRSS RS X R R XX R R R EE R R RS RN
N 1 MEAN -. 15278E+01
- 2 AUTOREGRESSIVE 1 2 .£31188+00 17.3:
. 3 RAUTOREGRESSIVE 1 3 . S5S9SE+00 9. &4
;- 4 AUTOREGRESSIVE 2 10 . 32810E+00 10,63
o S mMOVING AVERAGE 1 1 . 2:918E+00 6. 8%
" & MOVING AVERAGE 1 2 . B2209E+00 13. 34
SN 7 MOVING AVERAGE & €0 . 14956E+00 4,52
- BRI RNRTREEREERRREERERRERLRERFREEEREEREERREERRFRERBECRECRERECC T+
L THE RESIDULAL STATISTICS
:. N -1 3+ 3¢t + 3 F 3 1+ 13335+t
- SUM OF SQURRES : . 47244E-01 DEGRESS OF SREZDum a0
;i MEAN SQUARE : . 48208E-04 NUMESR OF R=SIDLELS 397
- R SQUARED : . 22098E+00
T
e

.
4

P B Y Y W




ARG AN SN R4 S AA S AR A0 et Sk M A P e i "‘1
THE PI WEIGHTS
-+ ++—+ 1
IUNIVARIATE BOX-JENKINS ™MCOD=LS CAN Bk EXPHKESSED AS A WEIE~TEID Suom 05 7T=Z IZ=7
OLUS A RANDCM S~OCKK. DEFINED AS THE 91 WEIGHTS, MODE.S Sx9RE35:D .~ ~—-=-%2
TZIRMS ARE WSEFUL ~OR FORECASTING AND/GR CUMMFARISON TS $7=FR ~v¥2I=S I~ woD-_3
THE GENERAL FORM OF THE MODEL EXPRESSED BY T—E oI WEIG-"S IS
2(t) = Constant + Pi(1) # Z(t—=1) + Pi(Z) #* Z(t=2) ... =+ Ji(n) * Z(o—=r
an
#! 1T LAG . THE PI WEIGAHT!
b : e ]
:.-' i Constant ! =,828211=+02
- P PAC 1) = 21918E+00
- P PiIC 2 ! =.13613E+01 !
. P PIC 3) ¢ -, B876BE+00
,‘. \ P P1C &) {  =.997S8E+00Q |
= VP D) : - 646 44E+0Q0 :
F~ o Pi( ~6) I =, 76227E+Q0
ol tRiIC i ~-. S6%9EE+00 ;
- ! PiC 8) ! —-,53897E+0C |
& P RIC 9 b -, 48S33E+00 |
Y PiC 10) 1 =,B807108+00 ! ‘
! P10 1) i —. 4788SE+00 |
" PPiC 12 1 =, 328087=+00 |
- PPi( 13) 1 -, 298E5E+00
t} P Pi 14) 1 —.30193E+00 !
- P PLC 1S) 1 = 2S17.1E+00
b Pi( 16) 1 =.24300E+00 |
[ ] P PL( LY Y = 20985E+00
P Pi¢ 18) 1 =.19716E+0C0
VP 1) : -, 1737EE+Q0 ;
R PPiC 20) 1 =.16074=+00 !
P PiL( 2L) 1 -, 14332E+00 !
P Pi( 22) 1 =.131415+00
Y P1C 23) 4 = 1179BE+00
P Pi( 24) 1 =, 107605+00
P PiIC 2%) 1 -.96968E-01
D Pi( 26) ¢ -.88133E-01
PRI 27)Y Y =, TIESIE-OL
P Pi( 28) 1 =.73382E-01
b PiI( 29) ¢ =.635403E-01 !
PPi¢ 30) 1 —-.53326E-01
PP 31) 1 =, S53630E-01 |
P Pi( 3&) I =, 48674501
P Pi( 33) 1 =, 44063E-01 !
I Pi( 34) ¢ =,3993285-01
! Pi( 35 ! -, 36168E-01 |
! PiC 36) ! =,3&773E-0:
P RPiIC 37) 1 -, 29683E-0L! !
! Pi( 38) ! -,26893=-0:
VP10 39) ' - 245E0E-Q1 !
CPLI( 40) 1 =, 2S0E3FT-0L
e e e s e




boa

td

T

3

L PiC 41) -. 1993.E-01

e Pi( 42) -.181112=01

[" i Pi( 43)° - 1640EE-01

L Pi( 44) —-. 148635-0"

. Pi( 45) -. 13464E-11}
Pi( 46) -.12197E-0Q1!

Pi( 47 i = 110439E-01

Pi( 48) =.100039E-0!
Pi( 60 -. 153262E+00
Pi( 61 -. 35355001
Bi( 6&) —. SVELLE+QQ
Pi( 63) -, 103135+00

Pi( 64) : -, 13126E+C0

Pif{ 65) -.89854%E~01
P1( &66) - 1:570E+0Q0
Pi( &7 -.B6BESE-QL
Pi( &83) - 0970E-0O1
Pi( €9) -.738S2E-01
Pi1( 70) -. 12185SE+00
Pi( 71> - 72E8S0E-02
Di( 72) -. 57808E-01
Pi¢ 73) -, 454535~01
Pi( 74) -. 45324E-C1
Pi( 75) - 38341E-01

Pi( 76) : -, 36373E-01
Pi¢ 77) P - . 31386E~-01
Pi{ 78) i -, 30004E~-01
PiC 79) t ~.3645EE-01
Pi( 80) ' - 24464E-01
Pi( 81) Vo = 218208-01
Pi( 82) H -. 200QLE-01
Pi( 83 t =.179582-01
Pi( 84) : -. 186379E-01

Pi( 85) -.147€1£-01
Pi( 88) -. 13424E-01
Pi¢ 877 -.131285&e~-0!
Pi( 848) = 1:00Q3E-O1
Pi(120) —-. 2283CE-01
Pi(1a2) -. 30833E-01
Pi(123) -.15729=-01
Pi(124) ' -. 22623 E-01
P1(125) i =. 14744201
Pi(126) ' ~. 17303E-01
Pi(127) I = 12966E-01
Pi(1z28) : -. 13610E-01
Pi(129) i —.11049€-01
Pi(130) ' -. 18227E-01

Pi(131) : -. 10863E~0"

e e me B am A mm mm me mv mw e mn e mm mw ua we am BE we wh am == me Fm mm =% me =k wme ee ee =n == st MR me e =% m- mr wm ® mm ST mm - ee

AN YA At Al . S A I

s e e e T T e
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mODE_ING RESULTS FOR TIME SERIES RXCARzz!.

3+ T+t -+ttt F 1ttt e

B T A R S T T Lz o= P R L e T e e
DATA : Z = AXCARszl. 1000. 1000 CESEIVRT 1INE

DIFFERENCING ON Z : NONE

BACKCASTING : OFF

396 9 309 W 3 2 3 36 3 6 T 6 6 I b I I I 2 A I 6 I I I I I I T I 6 T I I I I I I I I I I I KRR

UNIVARIATE MODEL PARAMETERS
R S R R R S ST R R R e e r e e el

FACTOR LAG COEFFICIENT T =ATIO
I H TR T TR ETEEEREERERELEERLEEEEEEEREREEEECEEE SR ER S e
1 MEAN -. 3339258&+01
2 RUTOREGRESSIVE 1 1 -.30822=+00 ~10.0¢&
3 RAUTOREGRESSIVE ! 3 . 15107E+00 4.76
4 AUTOREGRESSIVE 1 4 . 132285+00 4.15
S AUTOREGRESSIVE 2 10 « 4040E+00 <0.78
& AUTOREGRESSIVE & 20 . 20789E+00 6. 38
7 MOVING AVERAGE 1 40 -, 16729E+00 -4, &6

W TR R REREEEREREEELETEXERERELEEESCR IR RS>

TmE RESIDURL STATISTICS

-3+ ¥+ ¢+ + 3+ttt ¢+ttt &+
Scm OF SQUARES @ «239161E+01 DEBRE=S uwF rFREZEDCT : 57T
MEAN SQUARE : « 30094E-02 NUMEBER OF R=5I1IDuA_S z7g
: R SGQUARRED : . 35080E+00
b
d ~
. THE PI WEIGHTS
. - -+ 3 3 1t
t JNIVARIATE BOX-~JENKINSG MODELS CAN Be EXPREZSSED RS A WEIG-TZID S.™M 75 -2 -z~
r} ) S8 A RANDOM SHOCK. DEFINED AS TwE PI WEISH™S, MODELS Ex2RISS=D I\ T«~Z:zz
E TERWMS ARE USZESUL FOR FORECASTING AND/OR COMPARISOUN TO (C7=E~x TvIE- - w_DZ_3
b
o
;§ THE GENERAL FOXM OF THE MODEL EXPRESS=ED BY THE D1 wEI3-"S IS
%
F& () = (Constant + Pi(1) =% Z(t=1) + P1(Z) # Z(Tt=2) ... + P1(r) * Z.5--,




Y-tw-(_v—‘t—ﬁv—v—-ﬁ‘—wv.—--_—ﬁ--_..—-v—v‘_‘—-_ﬁ-_-—--_-._v'r-v_-—-_h-—_—.“~----—'_-‘

LAG : TmE PI wellG~T:
Constant —. 44875E+QL :
Pi( 1) . 30822E+00 '
Pi1( 3 -, 151072 +00 :
Pi( &) - LIEESEE+QO
Pi( 10) - S40Q4LQE+00 ;
Pi( 11) -. 10422E+00 :
PiC 13 . 51426E-01 ;
Pi( 14) . 45007E-0L i
Pi( 20) -. 20789E+(00 :
Pi( 21) -. 84076E-01 '

Pi( 23) ' .321407E-0:

P1( 24) . 274875-01
Pi( 40) . 16729E+00
Pi( 41) -.S1S6.E-01
Pi( 42) . 2S27ZE-01
Pi( 44) .22118E-01
- Pi( SO .56946E-01
& Pi( S1) .175S2E-01
: Pi( 60) .34778E-01
L‘; Pi( &1) L10719E-01
L @ Pi( 80) -. 27986201
o S — ?
F.-'
-
[:_ 3+ 3 3 F 3+ 3 1+ £ -+ttt 31+t 1+ 1+ttt 3+ttt :r -+t -tttk rT
o ) mODEL ING RESULTS FOR TIME SERIES AXCCEZE:.

vy

3 S I e I A A W 6 T I T T IS IR RIS N E SR CECE RS

DATA : Z = AXCCza1. 10000, 1000 QES=ZIVLTIINE

o

DIFFERENCING ON Z 1 NONE

BACHKCASTING : OFF

W3 e I e BT e I W I I NI RRRERE RN CE R R EEERTNECSCSECC -t

UNIVARIATE MODEL PARAMETERS
ST SR R R A T R S e T

~
=

M}

y‘ FACTOR LAG COEFFICIENT T ~&TIO
3
t i L L2222 LTELIRLLILLELLI LI LR R ELEEE R R R EE R L L B B R LR L B £ 0 5 B kb R R Xtk k]
= 1 MEAN - 14343E+01
o 2 AUTCREGRESSIVE 1 10 . 28348E+00 3. 36
P 3 MOVING AVERAGE 1 1 . 3363SE+00 _3.68
: 4 MGVING AVERAGE 1 3 - 212390E+00 -7.32
L S MOVING AVERAGE 2 20 =, 158435+00 -4, 77
E' I 2 E I EPEEE SR IR PR PP S EL LD SRS RS R R R R R RS EE R R L R L B R 2 B R R R TR E X X 2]
4
} THE RESIDULAL STSTISTICS
}j EE 2 3 1 P2 3 $ F 1t 1
E.= SUM OF SGUARES . 1340€E+00 DEBRESS JF FRISD.™ EEN
- MEAN SGQUARE C1ZE105-03 NUMESR -5 2-35I3_5_3 220

’
v '

(R ]
o a8 4

e 227132 +00

R SQURRED

A4

b Ik et 4
L)
;.ln
»
R N R
)

RN ST . L e
A e e e el e , TRV, ‘;A;J_A_L_¢__MM_“*~A;‘;1;4AA‘K;A;;‘i;;;;;;xj;;n;;i_-x;;}j
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THE PI WEIGHTS

JNIVARIATE BOX-JENKINS MODELS CAN Bt EXPRESSED AS A w=iIG=TEID Sum - ~—=Z 2257
SL_uS A RANDOM SHOCK. DEFINED AS T=E SI WEILHTS, MUDELS ExORESSzD [N T—==Z=X
TERMS ARE USEFUL FOR FCRECASTING AnND/OR COMBARISON TO O7R=E<x TYyIZs &- m_DZ_S.

T~E GENERAL FORM JF Tr~E MODEL EXPRESSED. 2Y T—E 91 WwE.3="3 1S

Z(t) = Constant + Pi(1) * Z(t—-1) + Pi(2) * Z{t-2) ... + 3Fi1(r) * Ziz—v

— —— . ——— —— — — ——————— Y > ———. w——

LRG i THE PI WEIGHT!
Constant -. 19458=+01 '
Pi« 1) ~. 39625E+00 i
Pi( &) ~e 13702E+00 !
Pi( .« 1306BE+OQOC
RPi( &) e 144075+0QC i
RPi( S » F0516E-01 !
Bi¢ 70 -. 2917 12-01 ;
RPi¢ &) ~-. 30830E~-01 i
RPi¢ 9) - 13023201 i
Pi( 10) -, SB24SE+QO ;
Pi¢ 11) -. 10535E+00 :
Pi( 12) ~. 38373E-01 '

RPi( 14) . 4013Z6E-01 ;
Pi( 15) 24201E-01 !
Pi( 20) . 159837E+00
Pi( 21» . E48032-01 :
Pi( 22) . 2640 :E-01 '
Pi( 23 -.23382=-0! :
Pi( 24) -. 2306ZE-0L :
Pi( 25) -.147539E-01 ;
Pi( 30) . 44807E=-01L '
Pi( 31) . 167012-01 '
Pi1( 4O) -, 2S1%45-01 ;

PiC 1L3) J . 44688=~-01

-, 1027&8==01

P1( 41)

mm ce e m PP mh e om e S m® e me " mw = me mm mm = ma e e mm aw mw me me e
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S
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F" .

-

:,

F‘ \
=

P
e et .
[ I AL N

L ani 3% 0
N

-— e - =

L et T R e X L s
DATA I = AXCAliz. 1000. 1900 SESIIVATIING

DIFFERENCING ON Z : NONE

BACKCASTING : OFF

B L R R e s D e e
UNIVARIATE MODEL PARAMETERS
e 2 R T T R R R R R R R R R R R e R e

FACTOR LAG COEFFICIENT T RATIO
T 2T LT EETE LI P EE SIS S SRS RS S LSS LSS S S A L R R L BB L R R L R R B R L A L
1 MEAN -. 21326E+01
2 AUTOREGRESSIVE 1t 1 =.20114E+00 -6. 23
> AUTOREGBRESSIVE 1t 2 . L1O76E+0O0 3. 41
4 AUTOREGRESSIVE 1 3 . 151282E+00 4,72
5 AUTOREGRESSIVE 2 10 . SYS2TE+00 3.63
& AUTOREGRESSIVE 2 20 . 19493E+00 6.6
7 MOVING AVERAGE 1 40 =, B4168E-C1 -2. 43

BRI AR ERE TR HXEETREEREEFXEERFLCEXLEE LS+

THE RESIDURL STATISTICS

F - 2 2 2 2 1 -+ - P A -+t 2 b R e

3 St OF SQURARRES @ L 1LSS58E+01L DEBREES OF FRSSEDvM g

- MEAN SQUARE s . 12040E-02 NUMEER OF R=SIIJ.=_5 :

(I R SQURRED 1 . 22833E+00

S

b

b

-

-

[l . THE PI WEIGHTS

L'. Zmmaz=ms=s=====

- .

b

h:_'

E. GNIVARIGTE BOX-JENKINS MODELS CAN Bz EXPRESSEID AS A w=IG-72Z2 S.v Z- —-Z D1z-

p . 2_uS A RANDOM SHOCK. DEFINED AS T=E 2] WEIGBHT3, ™MCIE.S Z193I33=D N ~—-2:2Z
] TERMS ARE USEFUL FOR FORECASTING AND/OR COMSQRISON TCo (C7=E~x v 3z O~ » 22 5,
[

b

k‘ THE GENERAL FORM CF THE mMODE. EXDRESSED BY T—~£ O] wzZli3-"8 1=

b

L' .

3 (%) = Constant + S1(1) # Z(t—=1) + P1(&) #* Ziz-2) ... + S1in; * .-vr
XTI

-

b

.

N.

.

b,

4B

11 |

>
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| ashdet Af AP A RN AN e A P e e A A A P A A ,-?
) |
- 4
" [
i LAG 3 TRE 91 weio-— .
! Constant i -—.2392&8=+0. ¥
| CoPLC 1) . 2U114E+00 .1
CRLC 2) 1 = 11076E+00 i
P RPLIC O 3) 0 =, 1513225 +00
P Pi( 10) 1 —,29S5287E+00 ;
PPiC 1) f -, 59392E-01 .
DPiC 12 . 32705E-01 :
”y VR0 13 , . 44652E-01 :
) VP11 20) ! —. 19492E+00 ;
P Pi( 31) 0 =, 33208E-01 -
Y pPi¢ 32y L215308-01 !
. YpiC 33 . 29477E-0L
- U Pi¢ 40) .84168E-01
doP1( 41) 1 =, 16930E-0L
P P1( 43) . 12728E-01
i P1( SO ; . 2438352E-01 '
P RiC 70 . 16407E~01 !
‘
#IJDE_INS RESULTS FOR TIME SERIES AXCCi1iz2.
L S22 A AP RIS RS L L L A2 R Rl AR RS R Rt PR L R0 8 B 2 B B R B B R B b B 2 b b
B DATA : I = AXCCl12. 10000, 1000 QESZTIVAETIINE
DIFFERENCING ON 2 : NONE 1
BACKCASTING : OFF j
22 2L LI LSRN EL LA R R AL AL PR LRI R R E R LSRR 2 XX L EE A L L 2 1 J
2 JNIVARIATE MODEL PARAMETERS ]
2L AL S ESTEELE RS LSS AS L AR R LSRR RS LEE S L R R R R R L L L B B E RN R T TR I L E TR J R
FACTOR LAS COEFFICIENT T XATIO g
EA AL 2L 2SR XSRS 2R R 2R Rl X AR 2R XX R R SRR R R R R R Rk X R R B R R R R TR B Rl R -
1 MEAN - 111 13E+01L 1
2 AUTOREBRESSIVE 1 1 . 655725-01 2. 10
3 AUTOREGRESSIVE e « 43EITE+00 .5. 80 f
4 AUTOREGRESSIVE ! 3 . EB7E4E+O0 8,63 .
S AUTCREGRESSIVE 2 10 . 1780Q3E+00 5, 52 -]
6 MOVING AVEXAGE | 20 =L 27222E+00 -3.5: y
A2 22 22 A TSR R SRR EE R RS R R YRR R R SR RS E L E EEE X L E B T RS R R R IR T R R 1
THE RESIDUAL STATISTICS 9
E 2+ 2 & 3 5+ i 1
\
"1
Sum OF SGELARES : .S531878-02 Ds33=Z3 O Z9-ZIow ERN) h
, MEAN SGUARE 1 LS41S6E-0S NU™E=R .5 ~=S312.a_3 EEN N
-,"‘ 2 SQAUARSD 1 L S1480E+00 _1
‘w
)
{
9 4
A
{
4
K
L T VP S T DU T L-AL-LAAA-:‘




AL Aol S M e Rl A A oA R B e i Cabitafi Rl ol AhAt athc At M i A4 SRk A A A S A A A C YA S-St AR S i il Sl A

SNIVARIATE BOX-JENKINS MCDELS CAN Bx EXPRISSED &S R w2 IE-7TzZ2 S_v - 7-I Z-=c
2.5 A RANDOM SeICK. DEFINED RS T=E S wWEILS~T35, MUIEZ_35 Z19~353<0 [~ ~-Z=z
YIIWMS ARS JSEFLL TOR FORECASTING AND/OR CIVMSARISCN T2 T7=E~x Tv3zz I- wII_=.

T-E GENERAL FORmM OF TwE MODEL ZXPRZISS=D 3Y T~E 2I w=I3~"5 13

¢t = Constant + P1(1) #* Z(t—1) =+ Pi(2; * Z(zt-2, .. -~ D1 # Z{T-~"
: LARG ! THE PI WEIB=T'
i Constant —. 15803=+0! ;
VoPid 1) : -. 62572E-01 H
VRO 2) ' -, 43537=+00 '
VP RPIC 3D : -. 26764E+00 i
v RP1(C 1O) ' -.17803=+00 i
P P1(C 1) H . 11674501 ;
VP12 H « 775032 -0Q1 :
i P1( 13) i 476452 -0Q1 :
v Pi( 20) H . CTRZEZE+Q0 :
VP 2L : . 17850E-01 :
PRI 22) ' . 11832=+00 ;
PRI 23) ' . 72858E-01 ;
i P1(C 30) ' 484845 -01L :
P P1( 32) ! - 21100E-01 '
v P10 33 : - 12971=-0" ]
{Pi( 40) : -, 74106E-01 :
VP11 42 H -, ISZEIE-O! H
it RiC 43) ' -. 19834E-01 :
i Pi¢ SO) ! -. 13193E-0! ;
{ PO &0 i e 2OLT73IE-OL '

— ————————— — — ——————— ——— ———— ——

P e T T T T T T T T L T e T L b T T b D e T T b 7 b T b bt b b b b N b L b R g G N e P -

LA E L ER RS R LRSS S22 R R SRR R 2 Rt sl ARl SRR B R R AR R R RS

. —- -

DARTA : L = RXCRL1EZ. 1000, 1000 ZES=ERVARTIIN

o

DIFFERENCING ON Z 1 NONE

BACKCARSTING : QOFF

BRI T TN IR ERLEXEREFREXEERTRER >R CEErT T

CNIVARIATE MODEL PARAMETERS

WA NIRRT XXX REREREEEFHERREEXERESE L2000,

FACTUR LAG COEFFICIENT T ORATIO

T EFPTR R R LSRR SR RS SRR R RS R LR S R R b R £ A B R B R R Il A A kI kR i i I S LI
1 mEAN -, 20727=+01

2 AUTOREGRESSIVE | 10 . 41588E+00 13,87

I ALTOREGRESSIVE | 30 L ZBOSEE+00 ERE

4 mMQVING AVERAGE 1 1 CSERTTESOO 13.3

S MOVING AVERRGE ¢ K T A RN NN -4, Ll

5 MCVING AVERAGZ & Z0D -, 18435 +00 =S, ax

I ZE PR P REE RS LR PR SR SRE R R R R R R R R R R R A R R E B AR S A S L E AN N ENESIEIENIENEE

WU Wi T OT UR SR W Uy W s 0 WSy WA DAy Uy R R W O VR TPV I T R T P LI S PR Y U Y
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ol THE RESIDUAL S-ATISTICS

=+ 1+ 3+ 2 - 3 1+

- SUM OF SGUARES : .S1S30E+01 DeGRESS O~ SR=SDomM o4
s mZAN SQUARE . .S2S08E-02 NUMEER OF RESIDUALS z70
N R SQUARSD . .S2418E+00

1 »

-

&

=

[ -

THE PI WEIGHTS

2 2t 3 = > £

JNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTESD S.om O T=Z o~
PLLUS A RANDOM SHOCK. - DEFINED AS T~E PRI WEIGH S, MUDELS EX2RISSZD N ~~Z==
TERMS RARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TY2E3 O- MeDE_S,

T—E GENERAL FORM OF T=E mMODEL EXIRISSED EBY

2(t) = Constant + Pi(1) # Z(t=1) + Oi1(Z) # Z(t—~3Z) ... + 2D1(v) *® Z(t=v,

s = —— i —————— ——— —— o~y ———— ——_—

] LAG i TRE PI WeIG~T!

! Constant | -. 43928z+01 :

P 1) i - 33277E+0Q0 :

P RPiC ) ¢ =, 28384E+00

HEE =P W 3) H -. 241 20E-01 :

i Pic¢ 4) H « J48E4E-0L !

P Pi(¢ S) : . 65330EE-QL '

v PiC &) : . 37858-01 :
P RIC ) ' . 13136E-01

PP 10D : -. 4204 8E+00 '

PP 1) v = 28388E+00 !

P P1C 12) : -. 11857E+0Q0 :

VP11 14) ! . 2327.E-01 '

v Pi( 1S : «a7468E-01 ;

P Pi(C 16 : « 13870E-01 :

. ' PiC 200 ! .18301:+00
. PR 21 i . 9757401
S PP 22) ' «SSE79E-00
; PRIl 29) : —-. 11943E-01

'i v Pi1( 30) H -. E0281E+QQ !

b VP10 3D : =. 10808E+00 !

F P Pi(C 32) T =.97706E-0" i

ﬁ: B 34y - 11090E-01

& ' PiC 35 < 13243E-01 !

= ' P1C 40) 1 =.3S138BE-01 !

;i v PiC 4L : -. 18688E~-01 '

K ¢ PP 50) ' « 37917E-01 :

- b P1( S1) . 13388E-01

;l PP S8 . 10670E-01

Pt
B

NP R S S S Su I IR S0 SR SR S S0V S I S, D SEP VIR PSR NP  SR Y S ) e " P RN SV S S S,




LA area aeas gen ge s b LN Bel s pAl e and el st sl e sl iLani st ab el bttt it AR A 1

EE I P e R P P L e et P E e PR
"ODEL ING RESULTS FOQR TIME SERIES AXCCla:z.
EEE S LR R R T 1t T = === T s R A e

—ry
N
s » 5T T
D PRI
oy
[ . Lo

26U T I N NN H R EEREREREEREEEEELESERERE LTRSS e
DARTA : Z = AXCCiaz. 10000. 1000 OReERVATIONS

DIFFERENCING ON Z : NONE

BRACKCASTING : OFF .

TR R R T R R Ay R R L R s
UNIVARRIATE MODE. PARAMETERS

A6 I W I I NTN R RTERERERFEEREFEEERRELEFREEEA SR RS SR CCTERC SR oo
o FRACTUR LAG COEFFICIENT T RATIS

T 6 b 2 I e I I I W eI I TN W TR NN N WX EEEEEREFERETTITCEE >

SAP A SR o e S N Sl ey
v

.*,'.'.TTFKT'.‘.‘xsrr T
‘ -
]
0
]
Il
0
0
]
i
1]
[}
i
I
]
0
1]
[}
|
I
0
0
]
]
]

L AP aaes amn L ora
|

1 MEAN -. 10351E+0!

2 AUTOREGRESSIVE 1 1 . 19957E+00 4,07

3 AUTOREGRESSIVE 1 2 « 10S38E+00 2. 33
' E 4 AUTOREGRESSIVE 1 3 . 48950E+00 17.39

S MOVING AVERAGE 1 1 . 17681E+00 3. 04

6 MOVING AVERRGE 1 2 =-.10757E-01 -. 20

7 MOVING AVERRAGE 2 20 -, 2e387E+00 -7.00
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"T-E RESIDULAL STATISTICS

SLM OF SQUARES @ . 884835&e-02 DESRE=ZS GF rF~EEDC™ 20
MEAN SQUARRES :  .89373=-08 NUMEBER O R=SIDURLS =27

R SGUARRED «417SEE+0Q0
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THE PI WEIGHTS

UNIVARIATE BOX~-JENKINS MOD:LS CAN Bt EXPRESSED AS A WEIGHTED Sov O

_ TS 85T
J_wS A RANDCOM SHOCK. DEFINED RS T~E DI WEIGHTS, MUDELS EXPRZSSZD N T—2SZ
TIRMS RARE USESFUL FOR FORECASTING AND/OR CUMPARISCN 7O OCO7HEx TY3Zs C- moDE_S.

THE GENERAL FORM OF Tw~g mMODEL RXPRESSED BY THE PI WEIGHRTS IS :

Z(t) = Constant + Pi(1) # Z(t-1) + Pi(2) % Z(t-23) ... + Pi(n) * Z{(t-nJ

' LAG i TRHE PI WEIG-T!

Constant -.192615+01 H

RPi( 1) —e 3763BE+0C0O |

N pPi( 2) -. 181775+00 :
§ Pi( 3 -. 5.40SE+00 !
Y Pi( 4) -.891482z-01 |
2 ; Pit %) -.102832E-01 ¢
- Pi( 20) «22387E+C0O :

Pi( 21) i . 8425%E-01

e em mm er g we am YT EE e e S e == - e

- Pi( 22) .36215E-0¢ |
: Pi( 23) . 1:S08E+00 !
[« Pi¢ 24) . 19957E-01 !
. Pi( 40) -.50116E-01 i
Pi( 41) -.18863=-01 !
Pi( 43) -. 2S762E-01 !
Pi( 60) .112196-01 !
[ ]
-+ ¢+ 4+ > 3+ + 1 + + 1 &t 3+ 2 &+t 3 ++ i1ttt 3+ 1+t +++t+ i+ttt 1ttt i
mMODE_ING RESULTS FOR TIME SERIES AXCAZ1Z.
-+ + 3+ + 3+ 1t 3 3+ 33 i3+ttt ittt ittt ittt ittt ittt ittt ittt ETr 3
T2 TEI TS LTSS LSRRI L E SRS 2SR E RS LS RS R LS R R LR RS REL T DL L T Y 2
DATA : 7 = AXCR212., 1000. 1000 CESTAVA~IIAS
DIFFERENCING ON Z : NONE
BACKCASTING : OFF
fL I TR TP E RS2SR EE SRR LS YRS L 2222 R R S XX XX Rl Rl 22 2
UNIVARIATE MODEL PARAMETERS
22T PR SR LIRS RS2SR AL SR LSS RS L RS R RS SRRl XX XS
FACTUR  LAG COEFFICIENT T RATIO
I LTSI ES R R AR SREL S S E L RS R R TR RS ER LR S L L R LR L L X EES
o 1 MEAN - 19370=+01
k 2 AUTOREGRESSIVE 1 1 . 476E85+00 1.5
3 AUTOREGRESSIVE 1 2 .35548E+00 1. 40
4 AUTOREGRESSIVE 1 3 J13ES53E+00 .12
S AUTOREGRESSIVE & 10 . 13872E+00 6. 18
6 MOVING AVERAGE 1 1 . S3595=+00 1.70
7 MOVING AVERAGE 1 z . SOSB3IE+O0 .76
| 8 MOVING AVERIAGE 2 20 =.392005+00 -13.03

LA R 22 XL R 2L Rl RS2l Rl E i el it R il ARl Rat Rl it L A 2R

. . s S
o« Ta .t P ‘u . : - LI v - 7". ‘. - . - . . : Lo N - < -.
(P AP TSI TIT. NV IORE . Ul S S . T8, § W PR Y W PPN L DN T U O ) D U P ORI U TR Wy e —— et -._;_A.J
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AT SP U GUA VTSI T SO U Sl Tl U AN G WL WA S W YU WY Yl |

THE RESIDUAL STATISTICS

-t 3+ 2+ 2t - 2 F 3+ 5 ¥+
SUM OF SQUARES : .64037Z+00 DeGREES 0~ =R=zDom S7%5
MEAN SQGUARE : .BI41:E-0O3 NUMBER UF ~ESIDUALS =87
R SQUARED : . B3847E+00
THE PI WEIGHTS
UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SuM OF T-Z 2237
PLUS A RANDOM SHUCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESS=D IN T=E35=
D=_.5.

TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHEx TYIES O mu

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIG-"5 I35 :

Z(t) = Constant + Pi(l) # Z(t=1) + Pi(2) #* Z(t=3) ... + 1({rs %* (t=r)

———— . ——— —— ——— ————————— - ————

H LAG d THE P1 WelGmT!
i Constant -. 10520e+0Q2 :
PoPi( L) -. 101 E8E+01 !
P Pi¢C 2 -.11010e+01 !
VoPid 3) -. A32OSE+Q0 !
VPRI 4) -. 72284 +00 :
P PIC ) -e S7645E+0QQ
VP &) -. 453565+00 :
VPiC 7 - 361 08E+0Q0 ;
P PiC 8) -. 28592E+00

P PiC ) - SE64LBE+QO

Y RPi( 10D -. 37803E+00

PiC 11) i =, 15383E+00

H « 3599:E+QO '
RPi( 24) : e 879042 +Q0 :
Pi( 23 :

Pi( 12) -.88507E-01

Pi( 13 -.S.191E-01

Pi( ta) -. 43535%9€~01 ;

Pi( LS -. 348E6E-01 ]

Pi( t6&) -.27927E~-01 !

RPi( 17) - 2E2039E-01 :
. Pit 18) -.17477E-01 :
P RP1IC 19) -. 13837E-01 :
P Pi( 20) «38104=E+00 ;
PPLC 21 « 28828E+00
VP 22) c BSLT7IE+OO :
VP 23)

. 2E2283E+0Q0 '
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Pi¢
21 ¢
Pi(
Pi
Pi¢
Pi¢
Pi¢
Pi(
Pi¢
R (
Pi¢
P1(
Pi(
Pi(
Pi(
Pi(
Pi(
Pi¢
Pi(
Pi(
Pi¢
Pi
Pi(
Pi
Pi(
pi(
Pi¢
Pi(
Pi(
Pi(
Pi(
Pi
Pi¢
Pi¢
Pi(
Pi(
Pi(
21
Pi(
21 (
Pi(
Dj(

z6)
27)
3=}
29)
30)
31)
32)
33)
34)
3%)
36)
40)
41)
42)
43)
44)
45)
46)
47)
48)
49)
S0)
S
S52)
€0Q)
61)
ee)
63)
&4)
&5
€6)
67)
£8)
&3)
70)
a¢)
81)
az)
83)
84)
as)
&6)

Pi(102)

ar me e mr mn me me we e me mm me me ek e mm s me Ae A= mm me B mr me e M me om me =e e == ap me me me e

. 17388E+00
« L3340E+00Q
« 11033E+00
« 87437E-01
« 147135E+Q0
.« 99467E-01
.« 34027E-01
« 13663E-01
« 17440£-01
13336E-01

. 10685E-01
-2 149472E+00
-. 15229E+00
-. 16656E+00Q
- 14114E+00
-. 10943E+00
-.87274E-01
-. 68370E~-01
—. S4EE6E-01
-. 43288E-01
-. 34288E-01
-. S7693E-01
-.23319E-01
-. 13343E-01

. 58594£-Q1

« 99637E-01

« £S5292E-01
S5326-01
. 428395e-01
34212E-01
«27036E-01
21429E-01
16963E-01

« 13441E-01

. 22616E-01
-. B2969E-01
-.23401E-01
-. 2S533E-01
-.21688E-01
-. 168135E-01
-.13411E~01
-. 105328E-01

. 10033E~-01
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=+ 3+ + ¢+ - 2+ $ ¢ -+ 2 ¢+ F 3 1 2t 1t 2t 2 2 2 2 2 2 2 2 b R

L 2 R R N L T o N R e R R S T LT
DATA : Z = AXCCa1:z. 10000, 1000 QOBSEIVARTIINS

DIFFERENCING ON Z : NONE

BACKCASTING : OFF

b 46 J 9 W I I I I I I T T HE I W I W I I T T IE I W I I I W eI I AW I I e W W I W I N

WNIVRARIATE MODEL PARAMETERS
R I T R R R e S R R R R R RIS LAY R R L

FRCTOR LAG COEFFICIENT T =ATID

9 6 S 3363 T S e T S T I I I I e I I W IE K IE N

1 MZAN -. 12356£+01

2 AJTOREGRESSIVE 1 1 . 42857E+00 4.93

S QUTOREGRESSIVE 1 e . 24043E+00 6. 31

4 MOVING AVERAGE 1 1 . 24332E+00 3. 88

S wIVING AVERAGE &2 SO0 ~-.26843E+00 -8.295
R S L T T E R e X e R R R O e 2 2 T AR YR e S

T=E RESIDUAL STATISTICS

F ++ 3+ P P 5+ 1 2 1t 3+ 3+ 1

Sov 0F SQURRES ¢ L 47133E-01L DESREES OF FRZEDUM TTI
MZAN SGUARE : . 47466E-04 NUMEeER OF R=SIDUALS : ==8

R SGIRRED « 19904=+00
THE PI WEIGHTS
-2 -+ 5+t 3+
SNIVARIATE BOX~-JENXINS MODELS CAN B: EXPRESSED AS R WEIGHTED SuM OF T—-& Iag~™
.28 R RANDIOM SHOCK. DEFINED RS THE PI WEIGSHTS, MUDELS EXPRESSED IN "-ESE
TERMS QRE LSEFQL FQR FORECASTING AND/OR COMPARISON TO OTHER TY2ES O MLDE_Z

1
i
m

NERAL FORM OF T—~E MODEL EXPRESSED BY T-E PI WEIGrHTS IS

2¢(t) = Cornstant + P1{(1) * Z{(t—=1) + Pi(2) # Z(t-2) ... + Pi1{r) * Zic=r

Ry ST
LIPS S = . L0 . . -0 R i R . . NP
PP SIS, S Y. U G GO Uil (T U DI DI GEg Gt W Sy IR, W Ty TG TS oY Wl DA W P N DL IS O D . B S U




AsBacihin S Aa e Al Ak -4 R Aiie - inthhes Al A %a - Aincabe A Se Anatte L Atas She i A AAShEchin AN AN AN DL

. (" .

Man-nn o ouid . oo aat 2 gn gar)
5 i AR
: .

. ‘ : LAG I THE PI WeIGHT
Constant -. 24784E+01
Pi¢ 1) -. 77243E+00

. Pi( 2) -. 5061 1E+0Q0
Pi( 2 -. 17406E+00
Pi( &) -.59864E-01
Pi( -. 20S88E-01
Pi( 50) . 2E843E+00
Pi( 51) . 20736E+00

Pi( S3) . 46724E-01
Pi( 54) « 16069E-01
Pi(10oMm -. 720S7E-01
Pi(i01) -.55664E-01
Pi(io2) -. 36463%E-01
Pi(103) -. 12542&-01

. 19343E-01
. 14942£-01

Pi(130)

Pi( 3&) i . 13586£+00
Pi(151) :

e, ch ap wd e ke me wm = e e me mm mm mm me me e me me e
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46 3 A I Jo T I I I I I I I I I I W T T e I I T W T T W T T T I W I X

DATA 3 Z = AXLARzza. 1000. 1000 OBSERVATIONS
DIFFERENCING ON Z : NONE
[ ] BACKCASTING : OFF

ST T T Y SR SRR Y SIS IS S S AT AR YIRS ST S L S S TS
UNIVARIATE MODEL PARAMETERS

3
&

t T ETT TSP EEES SR EPE TS SE ST SR RIS SIS SRS SRS IS S S S 2 2 X X2

L FACTOR  LAG COEFFICIENT T RATIO

4 ‘ (222X ETEETLESELIER2EL SIS E RS LS LTSRS LIS LIS SIS S S 2 L L 2 X X B 8 X 2 J

q 1 MEAN ~. 18880E+01

& 2 AJTOREGRESSIVE 1 2 .13944E+00 4. 41

- 3 AUTOREGRESSIVE 1 3 .3710.E-01 3. 06

o 4 AUTCREGRESSIVE & 10 . Z245€5E+00 7.81

s S AUTORSGRESSIVE & 20  .23248E+00 7.37

® £ MOVING AVERAGE 1 40 -.16181E+00 -4, 41
:; PE YT ETE LTI PSSR TS L PR TR SRS RS 2L 2 SIS RS L RS RS L 2 A 8 R A X 2 2 2 21
3
-

L THE R=SIDUAL STATISTICS
t-‘.' Y T Ty P Ittt 1
-

e SLM CF SQUARES : . 77304=+00 D=GREES 0OF FR:ZDOM 1 397
F wESN SILARE : L 73SL0E-03 NUMEBER UF RESIDUALS =77
[ R ZILERED 25175 +00
=
b .

I’ '-‘
) @
L — ™ ;".'0.4' :. "J‘. ~ .; I P SR S O VU, G ) -- o o S Ban Dot - aban ) 3 s dlinomdt s e .J
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N '
-
t’ . T=E XESIDLAL STATISTILS
\'T F+ 4+ + 3 3+t + t ¢+t t ¢+ttt 1+t
N SLm oF SHUARES @ W 27E3EE-01 DESRESS OF FREEDUM sge
N MEAN SGUARE : . 281425-04 NUMEER 0F ReSIDURLS 527
R SGUARED : . 23I860E+00
.
I
L..‘
»
P
4
~ THE PI WEIGHTS
====sS=sS=SxE===S
g
: _NIVARIATE BOX-JSENKINS MODELS CAN BE EXPRESSED AS A WEIGBNTED Sum OF T-E &5~
S5 A RANDOM SHOCK. DEFINSD AS THE PI WEIGHTS, MODELS EXPRESSSD N T=ESS
, TENTS ARE USEFUL SOR FORECASTING AND/OR COMPARISON TO GTHEX TYPES O- ™CDE_S.
‘
r
ThE GENERAL FORM OF TRE MODEL EXPRESSED BY TwE PI WEIGHTS IS :
Z(t) = Corstant + Pi(1) #* Z(t=1) + Pi(Z) # Z(t=2) ... + Pilr) % Z.z—-r>
1T LAG i THE PI WEIGHT!
! Constant | -.135452+01 !
0 CP1( &) 1 ~.32284E+00 !
CPi( 3) -, 20BZ6E+00 !
¢ 2i( 10y . 14213E+00 !
¢ Pi¢ 12) ¢ —=.45799E-01 !
- ! P1( 13) ! -.23318E-01 !
: ! Pi( 50) | T .31596E+00 !
¢ P 52 . 10181E+00 !
p ! Pi( 53) !  J.ES170E-01 !
b ' Pi( 60) 1 -, 44307E-01 |
o tP1C 62) . 14471501 |
. ! Pi(100) ¢ =.9983LE-01 !
v ! Pi(108) | ~—-.32169E-01 !
' ! Pi(103) : ~-.20591E-01 !
v ' Pi(110) | .14189E-01 !
. CP1(1S0) ¢ .3:543E-01 !
o ! oP1(158) .10164E-01 !
o ' !
[
Fe
F‘.
b
[
y -,'. ';'.'~ y \-.'.'LI_L &1."' ;‘A.L.‘.A.‘w. AT ,_‘" A A ;_‘-;'.;'--:4‘ A L ; PR \_ ——b -._ Oie¥ WY . Sl LA A S SN SO S S S |
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Appendix D (Cont'd)
AUTOBJ SAMPLE PRINTOUT (SUBJECT: JJJ)

L= A B T 2 o o IR

v"
=
=

MODEL ING RESULTS FOR TIME SERIES JJJRATRE

- = =|3;x = ==

.,

3+ 3 - 3§ § 3¢+ -kt i

b

=s==a=s==== === ===:

Laad o S S S et s s S eI R R R g
(4 DATA : Z = JJJRATRE 1000, _ 1000 OBSERVATIONS

DIFFERENCING ON Z : 1) 1 OF ORDER 1

BACKCASTING : OFF

A0S0 0336 T T8 T I A I T T I T I 6 T I I I I 6 I I I SE I I e I I 2 S R
:‘ ' UNIVARIATE MODEL PARAMETERS

! bad s bt s el s ezt al st a2 o 2t T RS Rl T TN TR R R R SRR R R ey
b

-

FACTOR LAG COEFFICIENT T RATIO
Q**i**Q****i*****i{**ﬁ***************i**i****i*****i*&***********

X 1 AUTOREGRESSIVE 1 20 ,19333E+00 6.07

}0 2 MOVING AVERAGE 1 1 . 975%8E+00 41.12

r 3 MOVING AVERAGE 1 = 3 =-.66148E-01 -2.67

[ 4 MOVING AVERAGE 2 S0 -, 17422E+00 ~-5.36

bad s bt ot o g g2t s ottt S Xl B2 R T L R R R N VPR RE TR e SRy

THE RESIDUAL STATISTICS

-t - 3 % 3 1 1 %% 3% —

sSUM OF SQURRES : « 48252E+01 DEGREES OF FREEDOM : 979

MEAN SQUARE : . 49489E-02 NUMBER QF RESIDUALS : 373

R SQUARED : . 68648E+00

THE PI WEIGHTS
WEEE BRI mmess St
]
b.
t - UNIVARIATz BOX~-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SuM QF THE PAQAST
j" PLUS A RANDOM SHOCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESSED IN THESE
. TERMS ARE USEZFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYRPES 0OF MODELS.
[ -
o

&;_ THE GENERRARL FORM OF THE MODEL EXPRESSED BY THE PTI WEIGHTS IS
Eﬂi Z(t) = Constant + Pi(1) # Z(t—=1) + Pi(2) #* Z(t=2) ... + P1(n) * Z(t-v)
[ -
p-
o
)
[
h N

\_.

- ° 0 - . M . . . - .--.‘ --".v.v P . D ot
R . W S Jiy” PP U SRR SR G L g SR g et ol sonl e eesmoh ook PPN R SR SRS PR SU W\ .

| om 4
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LAG

THE PI WEIGHT

ST T SS s2 S0 es ST S0 so s S0 SO S5 e 9% % ST me @= cw wv cr BT ew TE *e TP T TE e SN Y Ge B Ee me T BE e e S8 ew e ee Sh ee == mm ee e = =

At A

Constant

Pi(
Pi(
Pi(
Pi
Pi¢
Pi¢
Pi
Pi(
Pi(
Pi¢
Pi(
Pi¢
Pi(
Pi(
Pi
Pif
Pi <
Pi¢
Pi¢
Pi¢
Pi ¢
Pi(
Pi¢
Pi(
Ri(
Pi
Pit
Pic
Pi¢
Bi(
Pi(
Pi(
Pi(
Pi(
Pi
Pi(
Pi ¢
Pi¢
Pi
Pi
Pi(
Pi(
Pi(
Pil(
Pi¢
Pi¢
Pi(
Pi(

1)
2)
3)
4)
=)
6)
7)
a)
M
10)
11)

12)

13
14)
1%
16)
17)
18)
19)
20)
21)
22)
23)
24)
2s)
26)
27)
28)
29)
30)
31)
32)
33)
34)
3%
36)
37
28)
39
40)
41)
42)
43)
44)
4%5)
46)
47

« QQQ00VOE+QO
-. 19756E+01
-.19273E+01
-..18141E+01
-. 16391E+01
-. 147 16E+01
-. 117S1E+01
-. 10431E+01
- 93643E+00
~-.83583E+00
-. 74602E+00
-, 66386E+00
-. 39431E+00
- 5304SE+Q0
- 47345E+00
- 4225 8E+00
- 37717E+00
- S36E4HE+00
- S004TE+00
-.46151E+0Q0
- 23464E+Q0
-. 20904E+00
-. 17340E+00
-. 1536SE+0Q0
-. 13607E+0Q0
- 12127E+00
-. 10813E+00
-.96308E-01
-. 861 2%E-0t
-.76872E-01
-. 6861 1E-01
-.61238E-01
-. S4637E~01
-.48784E-01
- 43542E-01
-.38863E-01
-. 34687E-01
-. 30960E~01
-. 27633E-01
-. 2466 4E-01
-. 2201 4E-01
-.19648E-01
-. 17S37E-01
-. 138%52£-01
-. 13970E-01
—-. 1 24€3E-01
-. 11129€-01

« 1663 1E+0Q0




r‘?»"w_'w‘v.-‘v_v."'v"_’w‘_',"."‘_'"“_".'_"_"‘_"'__V:V'_‘H":T"_"vﬂ' ‘.‘,".'— '-_—v'-,' M N . - . L - - -1
K- o
¢
-
R ! Pit S1) ) .33712E+00 !
S ! PiC S2) ! « 32948E+00 |
. ! PiC 83) « 3t043E+00 !
- 2 ! PiC S4) . 280SSE+00 |
»,., I Pi( .85 . 25190E+00 !
- i PiC %8 « 22822E+00 |
% ! Pi¢ S7) . 201 L6E+00 !
. ! PiC 58) « 17958E+00 |
9 P Pi( 59) ! . 16030E+00 !
! PiC 80) i +14308E+00 !
. ! PiC B «12771E+00 !
B L PiC 82) ! .11398E+00 !
! Pi( 83 « 101 74E+00 !
! Pi( 84) ! . 30804E-01 !
: P PiC 8% . 81046E~-01 !
- ! PiC 68) ! . 72338E-01 !
¢t Pi( &7 . 64565E-01 |
! Pi¢ 88) ! .57627E-01 !
t Pic 89 . S51434E-01 |
! Pi( 70) ! .79589E-01 |
P PiC 7L . 401 52E-01
! Pi¢ 72) ¢ .35769€-01 !
! PiC 73) ¢ .29631E-01 !
P PiC 74) «26251E-01 !
P RPiC 7S . 23244E-01 !
H - P - T .20717E-01 !
L.PLC ZZ) _ . 18474E-01 !
\ ! PiC 78) ¢ . 16485E-01 !
!, VPiC 79 . 14713E-01
N ! PiC 80) ! .13131E-01 !
. ! Pi( a1y ! . 11720E-01 !
;yi V! PiC 82) ¢ .10461E-01 !
[ - ! Pi(100) | -,29001E-01 !
o ! Pi(101, | -.%87S7e-01 !
t![ t ! P1(102) ! -, S7423E-01 !
SR ! Pi(103) | -.%4102E~-01 !
;-.-_ ! Pi(104) I =, 488%94E-01 !
S ! Pi(10%) ! -,43902E-01 !
- ! Pi(106) | -, 392S1E-01 !
o ! Pi(107) | -,.3%0%8E-01 !
;o t Pi(108) | -, 31298E-01 !
F ! Pi(109) ! -.27937E-01 !
I P1(110) 1 -, 24936E-01 !
P Pi(111) 0 - 22257E-01 |
A P Pi(112) Y -, 1986SE-01 !
& ' Pi(113) ¢ -, 17731E-01 !
PY ! Pi(l14) 1 -, 1%82SE-01 !
&;- Y Pi(I1S) 1 -, 14125E-01 |
o ! Pi(116) ! -, 12607E-01 !
o P PI(117) 1 -, 112B2E-01 !
o P Pi118) ! -, 10043E-01
o ! Pi(120) | -.13869E-01
| @ PPi(ISL 1 L 10237E-01 !
B oPiC1%2) . 10004E-01 |

- —————— ——— —— — " _——— — —— _———— ————
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‘P ) R R R IS NI SIS EARIT ISR SAT = === FrY-FT T S PP P T P YT T F 3 F §5
pl MODEL ING RESULTS FOR TIME SERIES JJJCATRE
) - === = == RSN SRR AT TSR SIS DTS RES=D==SS

)

L Y,
¥ o
N o

e s X2 e 2l Rt S et e SR S o e AL TR R R R R e R e e T
DATA : Z = JJJCATRE 10000, 1000 OBSERVATIONS

DIFFERENCING ON Z : 1) 1 OF ORDER 10

7
'

BRCKCASTING : OFF

e e S22 S Rt R S e R s S R R S S S R R R R R R T R S =
UNIVARIATE MODEL PARAMETERS -

T IS TSI I AT I T3 TSI ST I I I I I T I T I S H I I I

Lo S AN e 7
I ‘f AR

FACTOR LAG COEFFICIENT T RATIC

: ﬂ*‘l’*i*****”*ﬂ\************i****“********i********t***********-ﬂ-

q 1 AUTOREGRESSIVE 1 10 =-.68971E+00 ~24,07

Fo 2 MOVING AVERAGE 1 1 .28697E+00 .47

- 3 MOVING AVERAGE 1 3 -, 1737SE+00 -5.92

4 MOVING AVERAGE 2 20  .43790E+00 12. 25

- ‘S TREND CONSTANT -. 81478E-03 -7.61

F. (a2 2222222222 22222 D22 P22 R R EL LR T R Y TR Y LR EIEVE LR R BT PR VANV S ARy

»" ’ THE RESIDUAL STATISTICS

}:. . _ == ISz Eass

% SUM OF SQUARES : .Z28776E-01 DEGREES OF FREEDOM : 375
L MEAN SQUARE :  .39770E-04 NUMBER OF RESIDUALS : 380
- R SGQUARED :  .84003E+00

.

THE PI WEIGHTS

==

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SUM OF TmE =aST
PLUS A RANDOM SHOCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESSED N THESE
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF MODE.S,

Voata
R

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS [S

3
-
;
:
s

2(e) = Constant + Pi(1) # Z(t—=1) + Pi(2) » Z(t-2)

eee *+ P1(rn) % Z(t—-vr)

'
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! LAG ! THE PI WEIGHT!
! . ! Constant | -—-.162Z6E-02 ! -
{ ' Pi( 1) !  =-.28697E+00 ! ’
) ! Pi¢ 2) ! =-.82380E-01 ! :
. I -2 S S § . 15612E+00 ! ;
) ! PiC 4y ) . 96383E-01 ! :
{ PiC %) ! . 42461E-01 ! 1
- ! Pi( &) ¢ =-,1%877E-01 ! |
B f PiC 7)) 1 -.21881E-01 ! ]
i PiC 8) I =.13912E-01 ! b
) 1"Pi( 10) ! =-.30668E+00 ! i
- ! Pi¢ 11) ! -.85%07E-01 ! 1
- ! Pi( 12) ! -, 24333E-01 ! 1
' PiC 13) ¢ .48143E-01 ! ]
$PiC 14) ) . 2918%E-01 ! i
) { PiC 15) ! .12749E-01 ! i
! Ri¢ 20) -, 1126%E+01 ! ‘
! Pi¢ 21) ! =-,322S1E+00 !
. P Pi( 22) ! -.9249SE-01 |
S ' Pi¢ 23) . 1759SE+00 |
b I Pi( 24) . 10846E+00 ! ‘
L ! Pi( 2%) .477S1E-01 ! K
} Pi( 28) ¢ -, 17923E-01 ! 4
1 Pi( 27) ! =.24639E-01 ! i
: ! Pi( 28) ! -, 156%4E-01 !
1 K ! Pi¢ 30) ¢ -,13181E+00 ! .
; 4 Pi¢ 31) ¢ -,35011E-01 !
L I PiC 33) .2087%5E-01 ! :
b ! Pi( 34) !, 12284E-01 ! y
! Pi( 40) ! =.49329E+00 ! :
! Pi( 41) | =.14124E+00 ! {
- ! Pi( 42) ! -,40513E-01 ! !
P PiC 43) . 77044E-01 | .
P - P Y-S L 47497E-01 ! X
f ! Pi¢ 45) ! . 20912E-01 ! :
9 ! Pi( 47) ! =,10730E-01 ! ;
; ! Pi( SO) 1 -.S7719E-01 ! :
! Pi( S1) ¢ ~-,15331E-01 ! 1
b { Pi( 60) ! =.21800E+00 !
A ! Pi( 61) | ~-.61845E-01 !
4 ! Pi( 82) ! -, 17748E-01 !
" ! Pi( 83) ! .33723E-01 !
Y ! Pi¢ 64) ! . 20797E-01 !
;- ! Pi( 70) | ~,2%27%SE-O01 !
g ! Pi¢ 80) ! =~-.9458SE-01 !
: ! Pi( 81) ! ~.27082E-01 !
! PiC 83) ! . 14771E-01 !
' Pi( 90) ! ~,11068E-01 !
! Pi(100) H ~. 41418-01 \
'Y ¢ Pi(101) ¢ -, 11853E-01 !
' ! Pi(120) ! ~-.181S6E-01 !
K




1

A A e #h o s et ool
. = P

DIFFERENCING ON Z : NONE

oy BACKCASTING : OFF
Fo L T2 LS 2T ER LTRSS LSRR PSS LS LTSS RSP PTE RS L PR L P R L XL L )
UNIVARIATE MODEL PARAMETERS -
Q*****“****Ni**“**********i*******************{*ﬂ************
FACTOR LAG COEFFICIENT T RATIO

e s s S T2 2 AR 22 TR SR SRR S 22 F AR R R LR Y SR R T 2 )
1 MEAN « 13158E+01 "

2 AUTOREGRESSIVE 1 1 -.850671E+00 -16.46 -~

3 AUTOREGRESSIVE 1 2 -.26687E+00 -8. 67
. 4 AUTOREGRESSIVE 1 4 « 60035E-01 2.11

S AUTOREGRESSIVE 2 10 « 29674E+00 9. 58

6 MOVING AVERAGE 1 30 =-.13514E+00 -4.11

F6 370 ST 3 T I 0 I I T A SIS T R R N R RN RN RN

‘! »

THE RESIDUAL STATISTICS

SUM OF SGQUARRES
& MEAN SQURRE
R SQUARED

« 57848E+01 DEGREES OF FREEDOM : 380
« S9029E-02 NUMBER OF RESIDUALS : 386
-« 30723E+00

THE Pl WEIGHTS

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED RS A WEIGHTED SuM OF THE RPAST
PLUS A RANDOM SHOCK. DEFINED RS THE PI WEIGHTS, MODELS EXPRESSED IN THESE
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF MJODELS.

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS :

- Z(t) = Constant + Pi(l) # Z(t-1) + Pi(2) # Z(t-2) ... + P1(n) * Z(t-n)

e mta e mT e M AT . e M A M A b i IS L B B i B N R P T al e m

) —gir s auivi aund Sas S St Jhtul Sttty

SERETABTIITAISITIIITTII=JRIT == RS SNSSECSS SRS REESEE
MODELING RESULTS FOR TIME SERIES JJJR11ll.
=== == == = === == === ZT=SE=mmommm=== STITTTE====SI=I==
- 03038 b b T b I T I I b T NI I W W b I I T I I I e I I I N R
: DATA : Z = JJJARL11l. 1000. 1000 OBSERVATICONS
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N LAG ! THE PI WEIGHT

n— Constant «92142E+00

Pi¢ 1) .« S0671E+00
Pi( 2) < 26687E+00
Pi( &)

-. 60035E~01 !

I PLC 10) ! =,29674E+00
P PiC 11) 1 -, 15036E+00
- P PiC 12 ! =-.79191E-01
P PiC 14) . 17814E-01
! pPi¢ 30) «13514E+00
! Pi¢ 31) ! -, 68478E-01
- ! Pi¢ 32) | -.385066E-0!
— ! BPit 40) . 40101E-01 !
! PiC 41) .20320E~01 !
PP 42 . 10702E~01 !
! Pi¢( 60 ¢ -.18263E-01 !
'. %+ -3 —3—3 EETUM_ BN —3 33 i+ &+ + + 3 3+ + + >+ 3+ % 3+ >34
MODEL ING RESULTS FOR TIME SERIES JJJCiild.
-+ —3 + + ¢+ 11 -+ 3+ 3+ + F + + 3+ 1+t %+t % %

a2 22 e 2 2t R e s S e T R e R e R R R L Y I R T
DATA Z = JJJCit11. 10000. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

BACKCASTING : OFF .
tad s 2 TR 2RSSR TSR I RN SRR R LR R R R Y e X

UNIVARIATE MODEL PARAMETERS
. E2 2 222222222222 R L R R XIS PR L LYY EY RN LT LT ERE YRR

FRCTOR LAG COEFFICIENT T RATIO

e a2 S22 2L S22 2 2 SR TR R Ry ey R e O s o
1 MEAN ~-. 29826E+01

2 AUTOREGRESSIVE 1 1 . 84105E-01 2.E6
3 AUTOREGRESSIVE 1 2 .« 235Q9E+Q0 8. 30
4 AUTOREGRESSIVE 1 3 « 17367E+Q0 S. 49
S AUTOREBRESSIVE 2 10 « 11133E+00 3. 49

e s ettt L 2 2l 2Rttt X2 Rt Rt R R X Y LR

THE RESIDUARL STATISTICS

SUM OF SQUARRES
MEAN SGQUARE
R SQUARED

. 89756E-01 DEGREES OF FREEDOM : 28¢g
«91401E-04 NUMBER OF RESIDUALS : 387
« 13713E+00

B e RO , . o
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- THE PI WEIGHTS

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED RS A WEIGHTED SuUM JF TmE PAST
PLUS A RANDOM SHOCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESSED IN TRESE
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES QF mMCDELS.

Z(t)

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS :

= Constant + Pi(l) * Z(t=1) + Pi(2) # Z(t=2) ... + Pi(n) » Z(t-n)

-

\

H LAG ! THE PI WEIGHT:
i Constant | -. 46740E+01 :
T RPiI(C ) i . =-.84105E-01 H
tPi(C 2) V=, 28509E+00 |
H =5 S QR § i =, 17367E+00Q0 !
t RPi(C 10) i = 1113SE+00 |
- i PiC L2) ! « 284035E-01 !
t PiC 13) H « 19339E-01 :

MODEL ING RESULTS FOR TIME SERIES JJJAl21.

SuM OF SQUARRES
MEAN SGURRE
R SQUARRED

231 I3 I T 36T T3 T I S 36 60 I IS I T I 0 A I TR IE I I T I T
DATA : I = JJJA121. 1000. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

BACKCASTING : OFF .
F9 0TI I I TE I I ISP I I I TE T I I IE T T I T I I I 6T I %

UNIVARIATE MODEL PARAMETERS
s a2 LA TS LS RSN AL RS LIRS RS S S S T R

FACTOR LAG COEFFICIENT T RATIQ
S22 AL LRSS E AL RS R T Y R R Y R TR S IR R
1 MEAN « 12344E+01
2 AUTOREGRESSIVE 1 1 =-.54072£+00 -17.60
3 AUTOREGRESSIVE 1 2 =.27013E+00 -8.79
4 AUTOREGRESSIVE 2 10 « 66750E+00 25. 10
S MOVING AVERRAGE 1 20 =-. 16308E+00 -4.57

(22223222l il Al Xl sttt lll a2 2t ittt XXXl Rk ol LRy

THE RESIDUAL STATISTICS

« 669Z0E+00

. 29880E+01 DEGREES OF FREEDOM : 383
. 30397E-02 NUMBER OF RESIDUARLS : 988
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THE PI WEIGHTS

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SUM OF ThE PRST

PLUS A RANDOM SHOCK. DEFINED RS THE PI WEIGHTS, MODELS EXPRESSED IN THESE

TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO QOTHER TYPES OF MODELS.
THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS

Z(t) = Constant + Pi(1) # Z(t—=1) + Pi(2) # Z(t=-2) ... + Pi(n) #* Z(t-n)

: LAG ! THE PI WEIGHT !
! Constant | « 14810E+01 i
f PLiC L) H « S4QT72E+Q0 |
V RPi(C 2) t «.27013E+00 |
P Pi( 10) i =.68730E+00 |
PP 1) I =.36093E+00 |
t PiC 12) i =+ 18031E+00 !
i PiC 200 : . 16508E+00 |
'V Pi( 21) i = 89262E-01 :
i PiC a22) I =.44392£-01 !
{ Pi( 30) ! « 11019E+00 |
{ Pi( 31) H « 59882E-01 H
t Pi( 32) : « 29763E-01 H
TPt 4O i =.272851E-01 !
it Bi( 41) ! « 14733JE-01 :
{ PiC S0O) ! =.18190&-01 H
=ZPERMATIRESN = - = mEmmTI=mommBE=R == -+t 3 ¢+ ¢+t -+t &ttt K
MODEL ING RESULTS FOR TIME SERIES JJJCi21.
M PBV MBI IER == -+ >+ + - + ¥+ + + ¢+ 1+ ¢t ¢+ 3+ ¢+ 1+ &5+ttt

E L 2 A 2ot a2l e ot il oo il 2l et il Rl Rl XY 2 X L)

DATA : Z = JJJC121. 10000. 1000 OBSEARVATIONS

- DIFFERENCING ON Z : NONE
>
b BACKCASTING : OFF
f: fa 2 2 o ST 22l 22 222l 222 R S Rt R o PR R R R RS R RS R RS E R S R T
- UNIVARIATE MODEL PARAMETERS -
,. 22 2222222222222t 2222l 2 Rl 22 2 Rl Rl RIS RS RS R R Y B2
- FACTOR LAG COEFFICIENT T RATIO
L: L2 222222222222 22222222 X222 22 R P22 X2 R R R R R 2SR LSS R R R LY
- 1 MEAN -.29711E+01
. - 2 AUTOREGRESSIVE 1 2  .14048E+00 4. 4%

A 3 AUTOREGRESSIVE 1 3 . 16761E+00 S. 38

- 4 AUTOREGRESSIVE 1 4 .79626E-01 c.se

- S AUTOREGRESSIVE 2 10 . 93S44E-01 2.93

; 6 AUTOREGRESSIVE 2 20 .15126E+00 4.76

. 7 MOVING AVERAGE 1 30 -, 14436E+00 -4, 44

-i i 2222222 Ll XA 2 SRR 22222 R R R L L R RN TR R TR R AR RS R e gy

I DT SR U WP IDNE I PR AL W U W SO gy e |
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THE RESIDURL STATISTICS

SERABWEXTTIRN =S|I

SUm OF SGQUARES : .12944E+Q0 DEGREES OF FREEDCM 3€3
MEAN SQUARE T . 13358E-03 NUMBER OF RESIDUALS : 376
R SQUARED : . 11919€E+00

THE PI WEIGHTS

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED RS R WEIGHTED SuM OF ThE PRST

PLUS A RANDCM SHOCK. DEFINED AS THE PRI WEIGHTS, MCODELS EXBRESSED IN THESE

TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARRISON TO OTHER TYRPES OF MODEL.S.
THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS

2(t) a Constant + Pi(1) # Z(t=1) + Pi(2) # Z(t-2) ... + Pi(n) = Z(t-n)

LAG i THE PI WEIGHT!
Constant -. 3992 1E+01 H
RPi( 2) -. 14048E+00 |
pPi¢ 3) -. 16761E+00 |
pi¢ &) -. 79626E~01 : -
Pi¢ 10) -.93544E~-01 H
piC 12) « 13141E-01 !
PiC 13) « 1567%E-01 H
Ri( 20) -. 151 26E+00

Pi( 220 : . 21249E-01

e mm G e ®e ge PR Cw e em B Ge TW AR e P Ve oy wE e sv e

Pi¢ 23) . 25352E-01 !
Pi( 24) « 12044€-01 !
Pit 30) . 14436E+00 !
| Pi¢ 32) .20280E-01 !
3 Pi( 33) . 24195E-01 !
s Pi¢ 34) . 11495E-01 !
b - Pi( 40y . 13504E-01 !
Pi( 50) .21835E-01 !
Pi( 60) -. 20839€-01 !

B STl S S

PRI S P DN RS W Y

- ) ". . P e . . -_'. P . . - _AA A-"_' wE 1,;'.L:J;‘-'_~.A’_' g P . LI I Py P S
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n 3+ 4+ >+ 4+ 3+ -+ -+ - 3 2 -+ 3+ 4t F ¥t 3+ F 3 &2+ 555+

1t 3 2 33221 2+ 3 2 2 2 P 32 2 4 55 4 S 4 4 4 S Tt

AT LIRSS 2SR RSN TR E Y R R R R R R R R T T 2 R )
DATA : Z = JJJAR21lL. 1000. 1000 OBSERVATIONS

DIFFERENCING. ON Z ¢ NONE

BACKCASTING : OFF
IZT BE S E AL SR SR AR R R St R

UNIVARIATE MODEL PARAMETERS
FIE I I TS T I I I T T I T I I I I I I IE I I I F I T I IR TR RN

FACTOR LAG COEFFICIENT T RATIO
e E R R R R R Y Ry Ry X R R 2 T R 2 L 2T X R R RS
1 MEAN « 13154E+01
2 AUTOREGRESSIVE 1 10 . 25038E+00 7.36
2 AUTOREGRESSIVE 1 20 « 17444E+00 S. 62
4 MOVING AVERAGE 1 1 . 428SSE+00 13. 42
S MOVING AVERAGE 1 2 « 73318E-01 2. 11
& MOVING AVERAGE 1 3 -.S0160E-01 -2. 80
7 MOVING AVERAGE 2 40 -.69039E-01 -2. 12

LA S 22 22 s sttt s 2 et il s o 222 R Rt 2 R R EL Y 2T

THE RESIDURL STATISTICS

e e S 1
SUM OF SQUARRES : .S0976E+01 DEGREES OF FREEDOM : 373
MEAN SQUARE : .S2391E-02 NUMBER OF RESIDUALS : 380

' R SQUARED P JR27477E+00

THE PI WEIGHTS

-+ 3 3 53

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED RS A WEIGHTED SuM OF TrE PAST
RS PLUS AR RANDOM SHOCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESSED IN THESE
“ TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF MODELS.

W

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PRI WEIGHTS IS

-- . Z(t) = Constant + P1(1) » Z(t—-1) + Pi(2) # Z(t-3) ... + Pi(r) #* Z(t-ry

PP W Y W .-J
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: LAG i THE Pl WEIGHT.

{ Congtant | «29814E+01 !

P BiC ) 17 =, 4285SE+00

P PiC 2) ! =.285697E+00 |

P PiC 3 ! -.51387E~-01 :

¢V RPiC B ! . 18448£-01 !

' BPi( &) H « 12376E-01 :

i Pi¢ 10) ! =.29130E+00 |

VRPiC LY H -. 10787E+00 :

P PiC 12) H -.84681E-01 H

! Bi( 13) ! =. 12971E-01 :

i Pi¢ 20) ! =.17486E+00 |

! Bi¢ 21) i\ =. 748356E-01 !

! Pi( 22) ! =.44878E-01 }

t Pi( 4O : « 6303%9E~-01 ' _
B ! Pil 41) ! «29587E-01 !

! Pi( 42) : « 17741E-0O1 H

{ Pi( 50) H « 17359E-01 H

! Pi¢ 80) ! e 12034E-01 '
EBMERNSMUBREINRE -t ¢+ 3 % 3+ 3+ + & 1+t ¢t ¢ttt ¢

MODELLING RESULTS FOR TIME SERIES JJJC211.

E=EMIJARAT= === = So=S=aT === === mEZZT=====

SUM OF SQUARES :
MEAN SQUARE : .11109E-03 NUMBER OF RESIDUALS
R SQUARRED :

- D

T A TN I I A6 T T I 2 I I3 T I I IS I A S 2 S I I 6 %
DATA Z = JJJC21l. 10000, 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

BACKCASTING : OFF

e T2 S E e 2T R St e e S R EE SR R S R R R R S R SR P N X T
UNIVARIATE MODEL PARAMETERS

S a2 22 T2 2R 2 222 2R R R LR R R RS R SR R R R T S

" FRCTOR LAG COEFFICIENT T RATIQ
S22 S TR IR R P LT IR TR R R R T R e R Y RS NN,
1 MEAN -. 21062E+01
2 AUTOREGRESSIVE 1 1 « 10464E+00 3.32
3 RUTOREGRESSIVE 1 2 « 20734E+Q0 6.71
4 AUTOREGRESSIVE 1 3 . 17823E+00 S5. €3
S AUTOREGRESSIVE 2 10 « 14339E+00 4, 46
6 AUTOREGRESSIVE 2 20 « 12431E+00 3. 86
7 MOVING AVERAGE 1 30 -.10870E+00 -3. 29
a2 TR R R I AR LA AL R R R R R e T T X R T R e

THE RESIDURL STARTISTICS

BERRARN DS TAIIBE DT =

.« 10776E+00 DEGREES OF FREEDOM

(Y1)}

~d o~}
~

« L600OSE+0QO

Iy

y ) 3 . y by y e . A ‘- Cw® S o
P T, P SO TP, . ISy S UURPUREU S ST SO SRS NP SRS
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THE PI WEIGHTS

UNIVARIATE BAX-JENKINS MODELS CAM BE EXPRESSED AS A WEIGRTED Sum OF TAaE RAST
PLUS A RANDOM SHCCX. DEFINED RS THE PI WEIGHTS, MCDELS EXPRESSzD IN THES=Z
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYRPES OF mCDELS.

(L)
: LAG ¢+ THE PI WEIGHT.
{ Constant | -.30903g+01 |
P RiC 1) i = 10464E+00 |
v RIC 2y 1 =.20734E+0Q00
! PiC 3) ! =.17823E+00 !
¢ PiC 10) i —.1433%E+00 |
PRIt L) ' « 13004E-01 |
P PiC 12) - « 29733€E-01 |
P Pi¢C 13 : . 23558e-01 !
i Pi( 20) i\ =.12431E+0Q00 |
P PiC 21) : . 13008g-01 !
- v Pi¢ 22) : «25800E-01 |
P Pi( 23) : . 22157E-01 |
i PiC 30) i « 10870E+00 |
¢ PiC 31) : « 1137401 |
P Pi( 320 : .22560E-01 !
P Pi( 33 H « 19374E-01 !
! Pi( 40) ' .135387E-01 |
! Pi( S0) i » 13513E-01 !
! Pi( 60) ' =.11816E-01 |
B = a= W= EEmEEEEZETE=EEE=E

THE GENERAL FORM QOF THE MODEL EXPRESSED BY THE PRI WEIGHTS IS :

= Constant + P1(1) # Z(t=-1) + Pi(2) # Z(t-2) ... + Pi(n) #* Z(t-n)

MODEL ING RESULTS FOR TIME SERIES JJJAR221.

g g g e i e g e e e R R e L R S e Rl
DATA : I = JJJA221. 1000. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

BACKCASTING : OFF
002033353 H6 36 TP I T AT I T I I T I IS I I I I I B IS A I

UNIVARIATE MODEL PARAMETERS
a2 SRS T L RS LS SRS E I RS R SRR R AR R R T

FACTOR LAG COEFFICIENT T RATIO
AT DI I 0TI 6T T I T I ST T T T I I I I I T N
1 MEAN -. 13393E+01
2 AUTOREGRESSIVE 1 2 « 11956E+00 ’ 3. €3
‘3 AUTOREGRESSIVE 1 3 . 29663E+Q0 9.73
4 AUTOREGRESSIVE 1 4 « 2004 1E+0O0 6. 58
S AUTOREGRESSIVE 2 10 .« 4961 1E+00 16. 34
6 MOV ING AVERAGE 1 1 « 46162E+00 14, 44
7 MOVING AVERRGE 2 30 -.23880E+00 -7.47

(2222 2222 2222 22222222222 22 222 222X 2 22 R 2 i A2 222 R R R R Y

R W PGS s . S TN - UL W DU ST S S SR Y. SU LT GU. S Sh. Uy - S, G, S0, SUE . SO
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THE RESIDUAL STATISTICS

SUM OF SQUARES : .3S8201E+01 DEGREES OF FREZDCM 373
MEAN SQUARE :  .39449E-02 NUMBER OF RESIDURLS 386
R SQUARED : .56236E+00

THE PI WEIGHTS

WEEJUNVDIJIEZXMITIDD

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS R WEIGHTED Sum OF THE PAST
PLUS A RANDOM SHOCK. DEFINED RS THE PI WEIGHTS, MODELS EXPRESSED IN THESEZ
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYRES OF MODE.S.

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE Pl WEIGHTS IS :

2ty = Constant + Pi(l) # Z(t—=1) + Pi(2) # Z(t=2) ... + Pitrn) * Z(t-r)
i LAG i THE PI WEIGHT! ‘
¢ Constant | -,3628%9E+01 :
PV PiC ) ! =, 46162E+00 | |
P PiC 2) i =.33266E+00 |
P RPiC 3 {  =.4501%E+00 |
P PiC 4) ! =.40822E+00 ! 1
v PiC B i\ =. 18844E+00 |
t PiC &) ! =-.86990E-01 ! ‘
VPRPiC ) i = 40157E-01 ¢
' RPi¢C 8) ! =.18537E-01 H
PPiC 1O) ! =-. S50006E+00 !
VRPiC 1L : -. 23084E+00 :
P PiC 12) ! = 47245E-01 :
P PiC 1) ! « 1253BE+00 |
P Pi( 14) ! « 15729e+00 !
P PIC 1% H « 72608E-01 H
VP PiC e ! . 33J17E-0L ¢
P PiC 17 ! « 15472E-01 H
P PIiC 30 ! . 23880E+00 !
! PiC 31 ! . 11023€E+00 !
v Pi¢ 32) ! . 79437E-01 '
v Pi(C 33 ! « 10750€E+00 |
! Pi( 34) : « 937482E-01 ]
VR 3D | « #5000E-01 !
¢ Pi( 38) ! « 20773E-01 |
i RiC 40) H «11941E+00 H
v PiC 4 : « 551 24E-01 H
P Pi( 42) H .11282E-01 |
P Pi( 43) ' = 29933E-01 |
1 P1C 44) P =.37360E-01 !
i Pi1( 485) P =.1733%€-01 |
! P1( 60) . =.57024E-01 !
VP 61) 1 =, 26323E-01 !
VPO e2) : -.18963E~-01 b
¢ P1( 63) : -. 25671E-01 H
P11 64) ¢V =.283278E-01 :
' P1( 65) i =< 10746E-01 !
P RPIC 70D ! —-.283516E-01 :
VRiC 7L : -. 13163E-01 '
i P1( 90) : «.13617E-01 H
A PRSI I O G0 SF SUF ULF L S GO0 YU WI0- VU UOPROF. SO, SPRAYL. SO0, SR WV OW O O W W
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MODEL ING RESULTS FOR TIME SERIES JJJC221.

" - — = - - - oy e — P e T T T+
r EESSSWI TSNS SIS EJ[IBIBBMBEASJD= =23= -+ 3+ ++ 1ttt 2 > 2 g ‘

ST R R e S R IR R R R e S R I R R R R R R
DATA : Z = JJIC221. 10000. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

BACKCASTING : OFF
22T RIS R A ISR S R S A PR AR SRR R R R Y

UNIVARIATE MODEL PARAMETERS
T T T T T I A IIETTE 3TI6 3335 3T 2 T I 36 T6 I I I 36 I I T I IE K IR

FACTOR LAG COEFFICIENT . T RATIO
90 36 I 36 I b 3 I I B I I I I 6 I 6 I b T I3 6 W b W HE W
1 MEAN ' -, 19154E+01 .
2 AUTOREGRESSIVE 1 = 2 . 14333E+00 4.%58
3 AUTOREGRESSIVE 1 3 . 13359E+00 4,27
4 AUTOREGRESSIVE 2 10  .71010€-01 2.23 -
S MOVING AVERAGE 1 70 -, 86921E-01 -2.65

(e 2o s 2L L2 sl Pttt s 222ttt 2a2 222X 22222l R Rt 2

THE RESIDUAL STATISTICS

SUM OF SGQUARRES
MEAN SQUARRE
R SQUARRED

. 12971E+00 DEGREES OF FREEDCM 382
« 13209€-03 - NUMBER OF RESIDUALS : 987
« 352182E-01

THE PI WEIGHTS

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SuUM OF THE PRST
PLUS A RANDOM SHOCK. DEFINED RS THE PI WEIGHTS, MODELS EXPRESSED IN THESE
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF MODELS.

THE GENERAL FORM OQF THE MODEL EXPRESSED BY THE PI WEIGHTS IS :

(%) = Constant + Pi(l) # Z(¢t-1) =+ Pi(é) * Z(£=2) (.0 *+ Pi(n) * Z(t=-r)

F ! LAG ! THE PI WEIGHT!
Z ! Constant | =.23407E+01 H
.- ! PiC 2) ! =.14333E+00 !
r ! PiC 3 ! -.133%9E+00 !
4 ! Pi¢ 10) ! =.71010E-01 !
. ! PiC 12) .10178E-01
. ! PiC 70) ] . 86921E-01 |
N P Pi¢ 72y . 124%9€-01
- P RiC 73 .11612E-01

PRy peusep
- E

o A B T T U .
'A_"'-‘"ﬂ ., ‘_v: "..,_"a ::_':_-A"s‘-.A'.c_' I N VTV IOV, VU U L TP, NP, U, (0 [0, W, Ty e Wy W T P P Y ]
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. : MODEL ING RESULTS FOR TIME SERIES JJJA=212.

. =ZI|ITITI =[RS sSSSSE@mmsSTSmns === =ssS=SsSs=ssSosSs====SH
: ~j

PA v 9 3 38 26 b I 3 T b I 1 T I I 2 I I b I T 6 I b I I I b I I I e b6 I I I R

o DATA : Z = JJJR212. 1000. 1000 OBSERVATIONS

o DIFFERENCING ON  Z : NONE

) .

BACKCASTING : QFF
s Rt R R S RS A R I R R I R R e T S

UNIVARIATE MODEL PARAMETERS
EE T SRR E R RS R R R R R R R X Ry Ry e s

FACTOR LAG COEFFICIENT" T RATIO

09636 353 W W I FIb b I T b A6 I I I W36 I I I I 3 I I I I I W S I B eI %

1 MEARN - 33II3FE+O1

2 AUTOREGRESSIVE 1 1 -.58330E+00 -19.76
3 AUTOREGRESSIVE 1 2 =.37123E+00 -12. 54
4 RAUTOREGRESSIVE 2 10 « 89172E+00 45. 31
S MAVING AVERAGE 1t 10 . 43308E+00 13.08

% b 43 I AT W6 I I I I I b W3 I I W I % % e %% N

THE RESIDUAL STARTISTICS

—_— Vv, T W

. Do e
. PR PR
R A

SUM OF SGQUARRES
MEAN SGUARE
R SQUARED

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED RS R WEIGHTEZD SuM OF T~E PAST
PLUS A RANDOM SHOCK.
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OQOTHER TYPES OF MCDELS

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS :

Z(g) =

Constant + Pi(1) # Z(t—1) + Pi(2) # Z(t=2) ...

. 58862E+01
. 39880E-02
« 66509E+00

DEGREES OF FREEDOM :
NUMBER OF RESIDUALS :

383
288

THE PI WEIGHTS

DEFINED RS THE PI WEIGHTS, MODELS EXPRESSED IN THESE

+ Pi1(n) # Z(t=-r)
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-

LAG i THE PI WEIGHT

Congstant -. 19254E+02

LA N A A o 2t 2
L IR ! TR )
-

PRiC 1) . S8ZS0E+00 |
V-RPiC 2 «37125E+00 !
P RPiC 10) ! -, 13908E+01 !
P PiC 11> 1 -.22983E+00
I PiC 12) ! -, 14577E+00 |
i Pi¢ 20) I -.69411E+00 !
P PiC 21) 1 =, 11473E+00 !
! Pil 22) | -.72749E-01
I Pi( 30) | -, 34641E+00 !
P RPiC 31 1 -.57260E-01 |
i PiC 320 | ~-.36307E-01 !
! Pi( 40) | =,17289E+00 !
b PiC 41) | -,28S577E-01 !
i PiC 42) ! -.18120E-01 !
! Pi¢ 50) ! -,86283E-0! !
.. V.PiC 51) }  =,14262E-01 !
{.Pi¢( 80) | =-.43062E-01 !
P PiC 7TO) 1 -.21491E-01 !
i Pi( 80) | =~.10728E-01 !
=EsagSEmma=T = 5 - 2+ 3 3 -+ 1
MODEL ING RESULTS FOR TIME SERIES JJJC212.
==o=m=maE=SS= === == [I_ESIE=TIDTRIE=E=I=TS ====== === S=|==E=ss

e a2 TR 2 IR AR I I R S R R R Ry e S E R R R R R
DATA Z = JJJCala. 100. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

BACKCASTING : OFF .
TR AR SR Z R R R R R R R T Ry R X e e

UNIVARIATE MODEL PRRAMETERS
a2 2 ST E TSR SR IE I EERE A REEAE RE T ERRE S E ER L RT E A

FACTOR LAG COEFFICIENT T RATIO
2R e T RSN LA R AR R S S R R R S T ]
1 MEAN -. 60968E+01
2 RUTOREGRESSIVE 1 1 « 1081 0E+00 3. 37
3 RAUTOREGRESSIVE 1 2 . 25623E+Q0 8. 32
4 RUTOREGRESSIVE 1 3 «14199E+00 4. 49
S AUTOREGRESSIVE 2 10 « 24531E+00 7.75
6 AUTOREGRESSIVE 2 20 « 13234E+00 4.18
7 MAVING AVERAGE 1 S0 -, 84624E-01 -2. 53
T e I TR R R R e A R R R R S R R T R R

THE RESIDUAL STATISTICS

. 73506E+03 DEGREES OF FREEDOM : 376
. 75779E+00 NUMBER OF RESIDURLS : 377
. 184359€+00

SUM OF SGQURRES
MEAN SGQUARE
R SGQURRED

. St P A R e s RS -
. . - ST . RSN PR Sl . . ct -
[ - L e A S A . W e T .. - . R P - - .
PP VR T VY TS WP T Y & WA DU S/ UL U 0 T S, v G Oy U G 0, L. Dy UL S, S Sy U . S PO, Wy, S U a0 S 0 W0 So¥ AT Sl ST VOU. Vol Wl Sy Wl SuF. WU S Syl .s.i
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THE PI WEIGHTS

IR EoSTTEE=====

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SuM OF TmE PRST

PLUS A RANDOM SHOCK. DEFINED RS THME PI WEIGHTS, MODELS EXPRESSED IN THESE

TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO QTHER TYRES CF MCDELS.
THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PRI WEIGHTS IS :

(L) = Constant + Pi(1) # Z(t=1) + Pi(2) # Z(t-2) ... + Pi(n) * Z(t~-n)

LAG | THE Pl WEIGHT.
Constant -.35183E+01 !
Pi( 1) -. 10810E+00 !
Pi( 2) -. 25623E+00 H
Pi¢( 3 - 14199E+00 !
Pi¢ 1O) - 24891E+00 !
Pi( t1) . 26583E-01 H
Pi( 12) «63011E-01 !
Pi( L « 343917E-01 !

Pi¢ 20) i =.13234E+00

e e e mEm we A ae wm we me e A= wE =@ aey T e =% P ee e

Pi( 21 « 1437001 !
Pi( 22) e 34063E-01
Pi( 23) . 18876E-01 |
Pi¢ SQ) . 84624E-01 |
Pi( S2) . 21684E-01 |
Pi( 33) «12016E-01 !
Pi( 60) . 20810E-01 |
Pi( 70) . 11250E-01 '

MODEL ING RESULTS FOR TIME SERIES JJJR222.

R R R R A R S e T R R S R Y R Y
DATA : { = JJJAzRk2. 1000. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

BACKCASTING : OFF
H96 IS I T T I FE A T I I I T T I I I I I I I R

UNIVARIATEZ MODEL PRRAMETERS
3 33 T IS A 2 A I TN I I I I I I R

FACTOR LAG COCFFICIENT T RATIO
2222 R RS2 A RA R T ELLEPEETLEII L SRR LR SRS S R R
1 MEAN -. S8224E+01
2 AUTOREGRESSIVE 1 1 .58105E-01 1. 86
3 AUTOREGRESSIVE 1 3 . 203383E+00 6. 47
4 AUTOREGRESSIVE 2 10 . 87782E+00 45. 61
S MOVING AVERAGE ! 2 -.13798E+00 -4. 36
& MOV ING AVERRGE 2 10 « 29425E+00 7.61
IR Z2E LR R R R TR Ry R R X B L R e e

.':“ PP PR S '.P\‘:'J‘ AP SR D S PR o ‘j
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THE RESIDUARL STATISTICS

. -
P

=== -+ F -3~ 1+ + 2 3 )
SUM OF SQUARES : .49844E+00 DEGREES OF FREEDOM 981
MEAN SQUARE ! «S0810E-03 NUMBER OF RESIDURLS 987
R SQUARED :  .E2802E+00
- -
3
3
;- THE PI WEIGHTS
’ - -
4
j UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SUM OF THE PAST
b PLUS R RANDOM SHOCK. DEFINED RS THE PI WEIGHTS, MODELS EXPRESSED IN THESE
g TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF MODELS.
N .
- ":
- THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS :
h
¢ 2(t) = Constant + Pi(1) # Z(t=1) + Pi(2) % Z(t=2) ... + Pi(n) * Z(t-r) :
| |
E K *
. ' ! )
[ _ i LAG ! THE PI WEIGHT!
‘g ' :
: { Constant | =-.13845E+02 : y
: P PiC( 1) 1 -.%810%E-01 ! (
L] ' Pi( @) ! .13798E+00 ! 4
9 P PiC 3 -, 195S3E+00 ! {
! ! Pi( 4) ! =,19038E-01 ! )
o P PiC S . 26979E-01 ! ]
¢ v PiC 10) 1 =,11720E+01 !
9 PP 1) . 33837E-01 ! ‘
§ D PiIC 12) ! .16171E+00 !
5 PRI 13 . 11411E+00 !
5 ! Pi( 14) ! =,22313E-01 !
L 'V PiC 1% ¢ -, 15743E-01 !
; ! Pi( 20) ! =,34483E+00 ! 1
s P PiC 21y . 10019e-01 ! |
1 ! Pi¢C 22y . 47578E~01 ! :
X ! Pi( 23) ¢ . 33569e-01 ! \
- ! Pi( 30) | =.10147E+00 N
3 ! PiC 32) . 14000E-01 | \
. ! Pi( 40) ! -,29862E-01 ! N
) ! ' §
' {
E_ b ,
.-
- ‘
3
3
\; |
. l
|
|

- >t . OO
. . - .. p!
- ‘. - - N - . . . n - - - - - - - - -
. T N s y 3 : . ‘. O a —a aAlal ala
4®a" a2 ta‘a a2 r"Aa'AlA"s ", A 4 r A r B > L PRI S R DU 4 a 3. A LN
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MODEL ING RESULTS FOR TIME SERIES JJJC&EE.

ks

i i e ey e -—— - — ———
==3== = === E=====

LTI
L S

Y
[
}
|
H

v

“ o

A R e L L Ly e R LT
DATA : I = JJJCaaza. 1000. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

;
'S
K: -
. BACKCASTING : OFF
f . . 39 36 3 36 36 36 I W W I W 6 W I W I I I W I A T I I W e 6 W e I T I W I
. - i UNIVARIATE MODEL PARAMETERS
k. . 9 96 326 3 3 I I I I 6 I I I W b I W I W I I W W JeIE W W W W W I A W W W W I W b
3 FACTOR LAG COEFFICIENT T RATIO
b
‘._' *****************-l-***********’l***********6*“****{**'}*****{**l***
o 1 MEAN . 73183E+00
:‘ _ 2 AUTOREGRESSIVE 1 1 -.97088E-01 -3.05
} > = AUTOREGRESSIVE 1 2 .18436E+00 5. 87
2 4 AUTOREGRESSIVE 1 3  .17600E+00 s. 53
! S AUTOREGRESSIVE 2 10 .21626E+00 6.75
F 6 AUTOREGRESSIVE 2 =0 .151aes+oo 4.74
7 MOVING AVERAGE 1 20 -. 15290E+00 -4, 62
<l*'l»****-l-*-l'************‘l**************‘I**i*“********************
Y
~ THE RESIDUAL STATISTICS
SUM OF SQUARES : . 11133E+02 DEGREES OF FREEDOM 360
MEAN SQUARE : .11S97E-01 NUMBER OF RESIDUALS : 367
R SQUARED : . 16219E+00
7
B T

- P . . S
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’ THE Pl WEIGHTS

UNIVARIATE BOX~-JENXINS MODELS CAN BE EXPRESSED. RS A WEIGHTED SuM QF TmE PRST

PLUS A RANDOM SHOCK. DEFINED RS THE PI WEIGHTS, MODELS EXPRESSED IN THESE

TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF MODEL_S.
THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS :

Z(t) = Constant + Pi(1l) # Z(t=1) + Pi(2) # Z(£t-2) ... + Pi(n) * Z(t-n)

iy
] LAG ! THE PI WEIGHT:
¢\ Constant | « 37376E+00 |}
-GS B . 97088E-01
3 ! Pi(C 2) ! -, 18436E+00 !
5 ! Pi¢( 3) ! =.17600E+00 !
g ! PiC 10) 1 —.21626E+00 !
- ! PiC 11) ! =-.20996E-01 !
a2 T PiC 12t .39869E-01 !
- P PiC 13) . 38060E-01 !}
{ ! Pi( 20) ! . 15290E+00 !
fPiC 21) =, 1484SE-01 ¢
! Pi¢ 22) ¢ .28188E-01 !
{ ! Pi( 23) ! . 26910E-01 !
!_PiC 30) ! -,11821E+00 !
' PiC( 31) ¢ -, 11477E-01 !
' Pi¢ 32y ! .21794E~01 !
I Pi( 33) ¢  .2080SE-01 !
! Pi( 40) | =,23378E-01 !
! PiC 50) . 18075E-01 !
-3 1 + ¥+t £ttt 1+~ + % -+-++ 1+ + —3 &+ 3 3 ++ ¢+ + ¢t - F 3+ ¢+ 1 %+ ¢+ -3t 3 -+ 1 3 34
MODEL ING RESULTS FOR TIME SERIES JJJAl1l2.
=== -+ + ++ +: + 3+ ¢+t &+t + 3+ttt === - ¥+ 3+ t ¢+t + ¥ ¥ 33

ST R R EE R R AR P LA R A R S S L L SR R S T R R L T
DATA : Z = JJJA112. - 1000. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

BACKCASTING : OFF
J9 ST I I I T I I I AT I I T I T I I I I T I I I I I I I IR

UNIVARIATE MODEL PARAMETERS
I AT LIT SIS L TSRS E SRS LS B RIS R S T

FACTOR LAG COEFFICIENT T RATIO
L T TR R e I AP R R I R R Y S e R S RS ST A R R L S ]
1 MEAN -. 67906E+01
2 RAUTOREGRESSIVE 1 1 -,26364E+00 -8. 68
2 AUTOREGRESSIVE 2 10 « 52048E+00 o 17.31
4 MOVING AVERAGE 1 20 -,17211E+00 -4. 96

36 3 36 330 I 33 I 8 6 I 3 I I I I 6 I I I T I I I S I b I S R

R
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Ve Tt At e ANAR R AN A atatalatalbatlalaNalatatali sl alaiiniist kil Dnl e ol A Y Pmimad ook ok B s
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THE RESIDUAL STATISTICS

E=EEBE=EST =
SUM OF SQUARES : ~ . 19409E+01 DEGREES OF FREEDOM : 988
MERAN SQUARE : . 19703E-02 NUMBER OF RESIDUALS : 3893

R SQUARED « 36341E+00

THE PI WEIGHTS

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED RS AR WEIGHTED SUM OF THE PARST
PLUS A RANDOM SHOCK. DEFINED RS THE PI WEIGHTS, MODELS EXPRESSED IN THESE
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPRRISON TO OTHER TYPES OF MODELS.

THE GENERAL FORM QOF THE MODEL EXPRESSED BY THE PI WEIGHTS fS :

I(t) = Constant + Pi(1) # Z(t=1) + Pi(2) # 2(t=2) ... + Piln) * Z(t-r)
T TLARG ' THE PI WEIGHT
Constant -, 80709E+01

Pi¢ 1) ! . 26564E+00
Pi( 10) | =.52048E+00
Pi¢( 11) | -, 13826E+00

e we P ae en me mw e e em o= -

Pi( 20) «17211E+00
Pi( 21) -. 45719E-01
Pi( 30) . 89580E~-01
Pi( 31) : . 23796E-01
Pi( 40) 1 =.29622E-01
Pi( S0) ! =.135418E-01

L Ve .
e RN . . -
PRI PR VS U T G G S G T SY-VY_ SO A R WO - W)
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Ve e tart et ataatatatatatl e sl ad el
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“. I s S TSNS S IIRRI SRS S=s=s=sssssssSsss BEESESSE=SSSESS=ESEESSS=S
MODEL ING RESULTS FOR TIME SERIES JJJC1i1iza.
EE RIS P PR P2 Tt Y = === ====ss=sSsS==s==

3o b 3 4 3¢ I W W I He e W W W I W W T W W WS I I T I I I W WA WA W W W

DARTR : Z = JJJCiiza. 1000. 1000 OBSERVATIONS
! DIFFERENCING ON Z : NONE

BACKCASTING : OFF

P S R R R A Y R S R P R R R Ay I I YR LR Y

UNIVARIATE MODEL PARRAMETERS

I e e T T LR L e Y T R R R S N S A S R R A s L )
FACTOR LAG COEFFICIENT T RATIO

At Jb b3 3% 3 W eI e W I I I I W W U W W AR S e I T I W T e R I I 6 K % %

Ll i e o T ?‘_r‘r?'_"f‘v_- A M A 4
. i o A N - . ‘,'4'. .- - .

- 1 MEAN . 63113E+01
3 2 AUTOREGRESSIVE 1 1 .79309E-01 2. 48
- Z AUTOREGRESSIVE 1 2 .21900E+00 7. 04
o 4 AUTOREGRESSIVE 1 3 .16608E+00 S.19
2 % AUTOREGRESSIVE 2 10 .26382E+00 8. 15
= 6 AUTOREGRESSIVE 2 20 .20279E+00 6.29
- 7 MOVING AVERAGE 1 30 ~-.83247E-01 -2. 44
3 * 4

t LT AT LIRSS R AL LSS DL ittt T o2t R R e

THE RESIDUARL. STRATISTICS

Sum OF SQURRES
MEAN SQUARE
R SQUARED

. 740SEE+O1 DEGREES OF FREEDOM
s 76347E~-02 NUMBER OF RESIDUALS
« 22761E+00

370
377

THE PI WEIGHTS .

JNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SUM OF TAE PRST
PLUS A RANDOM SHOCK. DEFINED RS THE Pl WEIGHTS, MODELS EXPRESSED IN THESE
TERMS ARE USEFUL FOR FDRECASTING AND/OR COMPARISON TO OTHER TYPES OF MODELS.

gnsa e e e
ATl c
.

[ J

-y
o

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS :

e

. 4 )
. P
AL B .
.Y P

2(%) = Lonstant + Pr(l) # Z(t=1) + Pi(2) # Z(t~2) o.. + Biln) * Z(t-r)
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' LAG ! THE Pl WEIGHT!

i. Constant | . 99881E+01 :

P PiC 1) 1 -, 79309E-01

. L PiC( 2) ! =.21900E+00 !

i PiC 3 ¢ -.16608E+00 .

! i PiC 10) | =.26382E+00 !

L P PiC 1) . 20923E-01 !

L P PiC 12) «S777SE-01 !

- CPLC 13 . 43816E-01 !

= ! Pi( 20) ! =.20279E+00 !

b P PiC 21) 1 .16083E-01 !

!l FoPiC 22y .44410E-01 !

o ! Pi( 23) ! .33680E-01 !

- b PiC 300 ! .83247E-01 !

- ' Pi( 320 ¢ . 18231E-01 !

2 ! Pi( 33) . 13826E-01 !

= oPiC 40 . 21962E-01 !

@ ! PiC 50) ! .16881E~01 !
.-
>~
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MODEL ING RESULTS FOR TIME SERIES JJJA122.
S EESEESESITISSESSESSEEmEEESTI =N == L = 0 3 3 3 3+ + 2 3 3+ 223t 1+ F 3+ 53

aat Il TR L2 2 ST R R AL TR IR R R AR R R e T T T R 2 Y
DATA : I = JJJAl22. 1000. " 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

BACHKCASTING : OFF’
T IR LSRR R R e IS R T R IS Y R R N I

UNIVARIATE MODEL PARAMETERS
2T 22T 2R ELI T R R R R e e e RIS II L AR SR LSl

FACTOR LAG COEFFICIENT T RATIO
S TR TR S T T T TSR SRR LSRR SRR AL S T )
1 MEAN -. 68009E+01
2 AUTOREGRESSIVE 1 10 . 5446 1E+00 26. 11
i S MOVING AVERASGE 1 1 . 26997E+00 8.78
- 4 MOVING AVERAGE 2 SO «11061E+00 3. 34
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THE RESIDUAL STARTISTICS

{1

CRERENEA

b
».

P

b"

a

*u_ SUM OF SQURRES : . 18079E+01 DEGREES 0OF FREEDOM : s8¢
i“ MEAN SQUARE : .18336E-02 NUMBER OF RESIDUALS : 390
s R_SQUARED : 4297AF +0Q , ,
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PLUS A RANDOM SHOCK.
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THE PI WEIGHTS

LNIVARIATE BOX-JENKINS MODELS CAN BE EXDRESSEb RS A WEIGHTED SUM OF TmE PAST
DEFINED RS THE PI WEIGHTS, MODELS EXPRESSED IN THESE
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARRISON TO OTWER TYPES OF MCDELS.

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS :

= Constant + Pi(1) # Z(t~=1) + Pi(2) # Z(£t=-2) ... + Pi(n) #* Z(t-r)

LAG i THE Pl WEIGHT

Constant ‘=, 17226E+02

PRiCD) i = 26997E+00 |
! Pi( 2) | ~-,72886E-01 !
P RiC D) i =, 19677E-01 !
¢ Pi( 10) ! —=.64461E+00 !
P BRiC 1 ! = 17403E+00 ! -
P PiC 12) I =.46983E-01 :
L = 5 S Sc ) ! =, 12684E-01 !
¢! Pi( 50) i =.11061E+00 !
P Pi¢ S i -.29861E-01 !
! Pi¢ 8O ! =.71298E-01 !
! Pi( 61 ! —.19248E-01 |
i Pi(100) i —=.12234E-01 !
TEESssaTInNNSSSEg=SST=Ss == TETEIIEXRIITIF==S=SI===E===S
MODEL ING RESULTS FOR TIME SERIES JJJCi22.
eSS ossanEITTIRS FE_XBRTTZR SRmEZ=SS=SE=E===S

e e R R E S s 2 2 T 2 T TP S,
DATA : I = JJJCiaz2. 1000. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE -

BACKCASTING : OFF
222222 RS L IS SLI RS SES L S2E SERE RIS E SR I SRS SRS SR B L L R

UNIVARIATE MODEL PARRARMETERS
2T IR LTS T SIS AR RS AR RL TSI AL LTRSS ISR IR S T A

FRACTOR LAG COEFFICIENT T RATIO
2 2 222 S R RS AT IR TR YR N RN R R IR R R L R
1 MEAN .« 66319E+01
2 AUTOREGRESSIVE 1 1 -.12195E+00 -3. 88
S AUTOREGRESSIVE 1 2 « 15636E+00 4.99
4 AUTOREGRESSIVE 1 3 . 18918E+00 6.01
S AUTOREGRESSIVE 2 10 . 13376E+00 4.20
6 AUTOREGRESSIVE 2 20 . 15959E+00 S. 00
7 MOVING AVERAGE 1 30 =-.12249E+00 -3.77
S22 I T R LIS TR R S R S S R T A RN S R S R X TR R T AR 2R WS S
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THE RESIDURL STATISTICS

BEZEEITTIRDSIT TR DS

37¢

. 14183E+02 DEGREES OF FREEDOM
S77

« 14622E-0O1 NUMBER OF RESIDUALS
. 12877E+00

slm OF SQUARES
MEAN SQUARE
R SQUARRED

THE Pl WEIGHTS

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS R WEIGHTED SUM OF THE PAST
ALUS A RANDOM SHOCK. DEFINED RS ™™E PI1 WEIGHTS, MODELS EXPRESSED IN THESE
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPRRISON TO OTHER TYPES OF MODELS. !

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHKTS IS : —i

() = Constant + Pi(1) # Z(t—1) + Pi(2) # I(t=2) ... + Piln) #* Z(t-r)

LAG ! THE PI WEIGHT!

-. 15250€-01

. w
: 1 -~ i
! Constant ! .B8%672E+01 ! R
P RiIC 1) . 12195E+00 ! b
PRIC 2) ) - 1%6262+00 ! k
P PiC 3) ! -, 18918E+00 ! R
! Pi( 10) ! -,13376E+00 ! '
P RPiC 1) Y -, 16312E-01 ! '3
' PiC 12) ! ,2091%E-01 ! 4
P RPiC 13) 1, 2%304E-01 ! :
P PiC 20) ! -, 1%9F3E+00 ! 4
P PiC 21) 1 -, 19462E-01 ! .
! RPiC 22) ! ,249%3E-01 ! :
' PiC 23) !¢, 30190E-0f ! X
! Pi( 30) ¢ ,12349E+00 ;
VRiIC 31 1 -, 1%060E-01 ! i
t PiC 32) ¢ ,19309€-0: : ° |
! Pi( 33) ! .23262E-01 ! j
! Pi( 40) !  .16518E-01 ! 4
) ! Pi( S0) ! .19707E-01 ! g
! PiC 80) ! : 3
1
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